Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Optical Tweezers: Exerting Force With Light, Gabriella Seifert Jan 2023

Optical Tweezers: Exerting Force With Light, Gabriella Seifert

Scripps Senior Theses

Photons carry momentum. When a tightly-focused beam of photons hit a particle, they transfer some of their momentum to the particle, exerting a force. Optical tweezers take advantage of this phenomenon to trap (or “tweeze”) a spherical bead just after the focus of a diverging laser beam, creating a potential well that pulls in beads. In this thesis, I predict the force exerted on trapped beads and measure the actual force using an optical tweezers setup that I built. To predict the force, I follow the path of all possible rays from a diverging beam incident on a spherical bead …


Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell Jul 2022

Atomic Gradiometry Based On The Interference Of Microwave Optical Sidebands, Kaleb L. Campbell

Optical Science and Engineering ETDs

We describe a novel pulsed magnetic gradiometer based on the optical interference of sidebands generated using two spatially separated alkali vapor cells. The sidebands are produced with high efficiency using parametric frequency conversion of a probe beam interacting with Rubiduim 87 atoms in a coherent superposition of magnetically sensitive hyperfine ground states. First, experimental evidence of the sideband process is described for both steady-state and pulsed operation. Then, a theoretical framework is developed that accurately models sideband generation based on density matrix formalism. The gradiometer is then constructed using two spatially separated vapor cells, and a beat-note is generated. The …


Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar Jun 2022

Developing A Data Acquisition System For Use In Cold Neutral Atom Traps, Jonathan E. Fuzaro Alencar

Physics

The rising interest in quantum computing has led to new quantum systems being developed and researched. Among these are trapped neutral atoms which have several desirable features and may be configured and operated on using lasers in an optical lattice. This work describes the development of a new data acquisition system for use in tuning lasers near the precise hyperfine transition frequencies of Rb 87 atoms, a crucial step in the functionality of a neutral atom trap. This improves on previous implementations that were deprecated and limited in laser frequency sweep range. Integration into the experiment was accomplished using an …


Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr Jul 2020

Radiation-Balanced Fiber Lasers And Amplifiers, Esmaeil Mobini Souchelmaei Mr

Optical Science and Engineering ETDs

Over the past decades, high-power fiber lasers and amplifiers have been extensively under research to achieve higher output powers. However, temperature rise in the core of fiber lasers and amplifiers has been a big issue in power-scaling. Radiation-balancing is a viable technique introduced for effective heat mitigation in lasers and amplifiers by S. Bowman in 1995. Radiation-balancing relies on solid-state laser cooling as a self-cooling mechanism to mitigate the generated heat in lasers and amplifiers. To implement the mentioned idea in fiber lasers and amplifiers, a set of issues should be scrutinized; (i) the amenability of silica glass (as the …


An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero May 2020

An Overview Of Lasers And Their Applications, Luis Cristian Giovanni Guerrero

Physics

This paper is an overview of lasers and their applications. The fundamentals of laser operation are covered as well as the various applications of advanced laser systems. The primary focus is to highlight some of the technological advancements made possible by lasers in the last half-century.


Zncdmgse As A Materials Platform For Advanced Photonic Devices: Broadband Quantum Cascade Detectors And Green Semiconductor Disk Lasers, Joel De Jesus Feb 2016

Zncdmgse As A Materials Platform For Advanced Photonic Devices: Broadband Quantum Cascade Detectors And Green Semiconductor Disk Lasers, Joel De Jesus

Dissertations, Theses, and Capstone Projects

The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for …