Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic, Molecular and Optical Physics

Honors Theses

Magneto-Optical Trap

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Quantum Defect Measurements For High Angular Momentum Rydberg States Of Potassium, Abraham Hill Jan 2020

Quantum Defect Measurements For High Angular Momentum Rydberg States Of Potassium, Abraham Hill

Honors Theses

We report measurements of the quantum defect for the f-, g-, and h-states of potassium with principal quantum number n between 26 and 29. Ground state potassium atoms in a magneto-optical trap are excited from the 4s state to the 5p state, then from the 5p state to the ndj state using lasers at 405nm and 980nm, respectively. We then measure the millimeter wave frequencies of the ndj to nl transitions. We extract the quantum defects from these frequency measurements in conjunction with the known d-state quantum defects. Experimental challenges with …


Expansion Of An Ultracold Neutral Plasma, Yin Li Jan 2019

Expansion Of An Ultracold Neutral Plasma, Yin Li

Honors Theses

Ultracold neutral plasmas (UNP) exhibit interesting behavior and are more feasible to control than hot plasmas. Physicists would like to lower the temperature of a UNP to achieve a higher Coulomb coupling parameter, Γ for both electrons and ions. However, the three body recombination (TBR) between ions and electrons produces Rydberg atoms and heats up the plasma electrons, thereby ionizing them to Γe < 0.2. Adding Rydberg atoms to the plasma will reduce the temperature of a UNP in certain situations. In this honors project, we tried to achieve a Γe value greater than 0.5 by embedding Rydberg atoms multiple times in the plasma. We did extensive numerical simulations, but we were unable to replicate previous results from another group which obtained Γe = 0.5 in the first 1 µ s of plasma evolution. However, we were able to use the simulation results to test various different experiment scenarios. For experiments, we created a UNP of Rubidium atoms in the magneto-optical trap by laser cooling and photoionization. We figured out a nice way to zero the electric field within the field meshes by looking at the plasma expansion very late in its evolution through the micro-channel plate. We set the voltage and delay on the field mesh bias to find expansion velocity of the plasma for time t > 50 µs, and we used different methods to deduce the expansion velocity from the ion time of flight signals. However, we found that there was no relation of Γe at 1 µ s and the expansion velocity …