Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration Sep 2022

Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration

Department of Physics and Astronomy: Faculty Publications

A search is presented for a heavy W0 boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using protonproton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb−1 at a center-of-mass energy of 13TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are …


High Sensitivity Multi-Axes Rotation Sensing Using Large Momentum Transfer Point Source Atom Interferometry, Jinyang Li, Gregório R. M. Da Silva, Wayne Cheng-Wei Huang, Mohamed Fouda, Jason Bonacum, Timothy L. Kovachy, Selim M. Shahriar Aug 2021

High Sensitivity Multi-Axes Rotation Sensing Using Large Momentum Transfer Point Source Atom Interferometry, Jinyang Li, Gregório R. M. Da Silva, Wayne Cheng-Wei Huang, Mohamed Fouda, Jason Bonacum, Timothy L. Kovachy, Selim M. Shahriar

Department of Physics and Astronomy: Faculty Publications

A point source interferometer (PSI) is a device where atoms are split and recombined by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that can automatically filter out the signal from accelerations. The phase shift arising from the rotations is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by increasing the momentum transfer, it should be possible to enhance the sensitivity of the PSI. Here, we investigate the degree of enhancement in …


Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt Jun 2021

Kapitza-Dirac Blockade: A Universal Tool For The Deterministic Preparation Of Non-Gaussian Oscillator States, Wayne Cheng-Wei Huang, Herman Batelaan, Markus Arndt

Department of Physics and Astronomy: Faculty Publications

Harmonic oscillators count among the most fundamental quantum systems with important applications in molecular physics, nanoparticle trapping, and quantum information processing. Their equidistant energy level spacing is often a desired feature, but at the same time a challenge if the goal is to deterministically populate specific eigenstates. Here, we show how interference in the transition amplitudes in a bichromatic laser field can suppress the sequential climbing of harmonic oscillator states (Kapitza-Dirac blockade) and achieve selective excitation of energy eigenstates, cat states, and other non-Gaussian states. This technique can transform the harmonic oscillator into a coherent two-level system or be used …


Testing Quantum Coherence In Stochastic Electrodynamics With Squeezed Schrödinger Cat States, Wayne Cheng-Wei Huang, Herman Batelaan Apr 2019

Testing Quantum Coherence In Stochastic Electrodynamics With Squeezed Schrödinger Cat States, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

The interference pattern in electron double-slit diffraction is a hallmark of quantum mechanics. A long-standing question for stochastic electrodynamics (SED) is whether or not it is capable of reproducing such effects, as interference is a manifestation of quantum coherence. In this study, we used excited harmonic oscillators to directly test this quantum feature in SED. We used two counter-propagating dichromatic laser pulses to promote a ground-state harmonic oscillator to a squeezed Schrödinger cat state. Upon recombination of the two well-separated wavepackets, an interference pattern emerges in the quantum probability distribution but is absent in the SED probability distribution. We thus …


Laser-Induced Electron Emission From Au Nanowires: A Probe For Orthogonal Polarizations, Eric R. Jones, Wayne Cheng-Wei Huang, Gobind Basnet, Bret N. Flanders, Herman Batelaan Jan 2018

Laser-Induced Electron Emission From Au Nanowires: A Probe For Orthogonal Polarizations, Eric R. Jones, Wayne Cheng-Wei Huang, Gobind Basnet, Bret N. Flanders, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

Photoelectron field emission, induced by femtosecond laser pulses focused on metallic nanotips, provides spatially coherent and temporally short electron pulses. The properties of the photoelectron yield give insight into both the material properties of the nanostructure and the exciting laser focus. Ultralong nanoribbons, grown as a single crystal attached to a metallic taper, are sources of electron field emission that have not yet been characterized. In this report, photoemission from gold nanoribbon samples is studied and compared to emission from tungsten and gold tips. We observe that the emission from sharp tips generally depends on one transverse component of the …


Two-Color Multiphoton Emission From Nanotips, Wayne Cheng-Wei Huang, Maria Becker, Joshua Beck, Herman Batelaan Feb 2017

Two-Color Multiphoton Emission From Nanotips, Wayne Cheng-Wei Huang, Maria Becker, Joshua Beck, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

Two-color multiphoton emission from polycrystalline tungsten nanotips has been demonstrated using two-color laser fields. The two-color photoemission is assisted by a three-photon multicolor quantum channel, which leads to a twofold increase in quantum efficiency. Weak-field control of two- color multiphoton emission was achieved by changing the efficiency of the quantum channel with pulse delay. The result of this study complements two-color tunneling photoemission in strong fields, and has potential applications for nanowire-based photonic devices. Moreover, the demonstrated two-color multiphoton emission may be important for realizing ultrafast spin-polarized electron sources via optically injected spin current.


Structure Evolution And Multiferroic Properties In Cobalt Doped Bi4Ndti3Fe1-XCoXO15- Bi3Ndti2Fe1-XCoxo12-Δ Intergrowth Aurivillius Compounds, D. L. Zhang, W. C. Huang, Z. W. Chen, W. B. Zhao, L. Feng, M. Li, Y. W. Yin, S. N. Dong, X. G. Li Jan 2017

Structure Evolution And Multiferroic Properties In Cobalt Doped Bi4Ndti3Fe1-XCoXO15- Bi3Ndti2Fe1-XCoxo12-Δ Intergrowth Aurivillius Compounds, D. L. Zhang, W. C. Huang, Z. W. Chen, W. B. Zhao, L. Feng, M. Li, Y. W. Yin, S. N. Dong, X. G. Li

Department of Physics and Astronomy: Faculty Publications

Here, we report the structure evolution, magnetic and ferroelectric properties in Co-doped 4- and 3-layered intergrowth Aurivillius compounds Bi4NdTi3Fe1-x CoxO15-Bi3NdTi2Fe1-xCoxO12-δ. The compounds suffer a structure evolution from the parent 4-layered phase (Bi4NdTi3FeO15) to 3-layered phase (Bi3NdTi2CoO12-δ) with increasing cobalt doping level from 0 to 1. Meanwhile the remanent magnetization and polarization show opposite variation tendencies against the doping level, and the sample with x = …


Dualism Between Optical And Difference Parametric Amplification, Wayne Cheng-Wei Huang, Herman Batelaan Jan 2017

Dualism Between Optical And Difference Parametric Amplification, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

Breaking the symmetry in a coupled wave system can result in unusual amplification behavior. In the case of difference parametric amplification the resonant pump frequency is equal to the difference, instead of the sum, frequency of the normal modes. We show that sign reversal in the symmetry relation of parametric coupling give rise to difference parametric amplification as a dual of optical parametric amplification. For optical systems, our result can potentially be used for efficient XUV amplification.


Eikonal Perturbation Theory In Photoionization, F. Cajiao Vélez, Katarzyna Krajewska, J. Z. Kamiński Jan 2016

Eikonal Perturbation Theory In Photoionization, F. Cajiao Vélez, Katarzyna Krajewska, J. Z. Kamiński

Department of Physics and Astronomy: Faculty Publications

The eikonal perturbation theory is formulated and applied to photoionization by strong laser pulses. A special emphasis is put on the first order approximation with respect to the binding potential, which is known as the generalized eikonal approximation [2015 Phys. Rev. A 91 053417]. The ordinary eikonal approximation and its domain of applicability is derived from the generalized eikonal approximation. While the former approach is singular for the electron trajectories which return to the potential center, the generalized eikonal avoids this problem. This property makes it a promising tool for further investigations of rescattering and high-order harmonic generation processes.


Momentum Exchange In The Electron Double-Slit Experiment, Herman Batelaan, Eric Jones, Wayne Cheng-Wei Huang, Roger Bach Jan 2016

Momentum Exchange In The Electron Double-Slit Experiment, Herman Batelaan, Eric Jones, Wayne Cheng-Wei Huang, Roger Bach

Department of Physics and Astronomy: Faculty Publications

We provide support for the claim that momentum is conserved for individual events in the electron double slit experiment. The natural consequence is that a physical mechanism is responsible for this momentum exchange, but that even if the fundamental mechanism is known for electron crystal diffraction and the Kapitza–Dirac effect, it is unknown for electron diffraction from nano-fabricated double slits. Work towards a proposed explanation in terms of particle trajectories affected by a vacuum field is discussed. The contentious use of trajectories is discussed within the context of oil droplet analogues of double slit diffraction.


Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick Aug 2015

Spin-Dependent Two-Color Kapitza-Dirac Effects, Scot Mcgregor, Wayne Cheng-Wei Huang, Herman Batelaan, Bradley Allan Shadwick

Department of Physics and Astronomy: Faculty Publications

In this paper we present an analysis of the spin behavior of electrons propagating through a laser field. We present an experimentally realizable scenario in which spin-dependent effects of the interaction between the laser and the electrons are dominant. The laser interaction strength and incident electron velocity are in the nonrelativistic domain. This analysis may thus lead to novel methods of creating and characterizing spin-polarized nonrelativistic femtosecond electron pulses.


Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan Mar 2015

Discrete Excitation Spectrum Of A Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

We report that upon excitation by a single pulse, a classical harmonic oscillator immersed in the classical electromagnetic zero-point radiation exhibits a discrete harmonic spectrum in agreement with that of its quantum counterpart. This result is interesting in view of the fact that the vacuum field is needed in the classical calculation to obtain the agreement.


A Low-Power Optical Electron Switch, Wayne Cheng-Wei Huang, Roger Bach, Peter Beierle, Herman Batelaan Feb 2014

A Low-Power Optical Electron Switch, Wayne Cheng-Wei Huang, Roger Bach, Peter Beierle, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

An electron beam is deflected when it passes over a silicon-nitride surface, if the surface is illuminated by a low-power continuous-wave diode laser. A deflection angle of up to 1.2 mrad is achieved for an electron beam of 29 μrad divergence. A mechanical beam-stop is used to demonstrate that the effect can act as an optical electron switch with a rise and fall time of 6 μs. Such a switch provides an alternative means to control electron beams, which may be useful in electron lithography and microscopy.


Dynamics Underlying The Gaussian Distribution Of The Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan Oct 2013

Dynamics Underlying The Gaussian Distribution Of The Classical Harmonic Oscillator In Zero-Point Radiation, Wayne Cheng-Wei Huang, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

Stochastic electrodynamics (SED) predicts a Gaussian probability distribution for a classical harmonic oscillator in the vacuum field. This probability distribution is identical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg minimum uncertainty relation is recovered in SED. To understand the dynamics that give rise to the uncertainty relation and the Gaussian probability distribution, we perform a numerical simulation and follow the motion of the oscillator. The dynamical information obtained through the simulation provides insight to the connection between the classic double-peak probability distribution and the Gaussian probability distribution. A main objective for SED research is to …


Phase And Absorption Gratings For Electrons, Hong Gao, Glen Gronniger, Daniel Friemund, Alex Cronin Jan 2002

Phase And Absorption Gratings For Electrons, Hong Gao, Glen Gronniger, Daniel Friemund, Alex Cronin

Department of Physics and Astronomy: Faculty Publications

We report the experimental realization of phase and absorption gratings for electrons. Phase gratings made with standing waves of light with a periodicity of 266 nm are used to diffract 380 eV electrons [1]. Material gratings of 100 and 200 nm periodicity are used to diffract 500 eV electrons. We are exploring the possibility to use these gratings for low energy electron interferometry.


Observation Of The Kapitza-Dirac Effect, Daniel L. Freimund, Kayvan Aflatooni, Herman Batelaan Sep 2001

Observation Of The Kapitza-Dirac Effect, Daniel L. Freimund, Kayvan Aflatooni, Herman Batelaan

Department of Physics and Astronomy: Faculty Publications

In their famous 1927 experiment, Davisson and Germer observed the diffraction of electrons by a periodic material structure, so showing that electrons can behave like waves. Shortly afterwards, Kapitza and Dirac predicted that electrons should also be diffracted by a standing light wave. This Kapitza-Dirac effect is analogous to the diffraction of light by a grating, but with the roles of the wave and matter reversed. The electron and the light grating interact extremely weakly, via the ‘ponderomotive potential,’ so attempts to measure the Kapitza-Dirac effect had to wait for the development of the laser. The idea that the underlying …