Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Systematic Effects In Interferometric Observations Of The Cosmic Microwave Background Polarization, Ata Karakci, Le Zhang, P. M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jul 2013

Systematic Effects In Interferometric Observations Of The Cosmic Microwave Background Polarization, Ata Karakci, Le Zhang, P. M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

The detection of the primordial B-mode spectrum of the polarized cosmic microwave background (CMB) signal may provide a probe of inflation. However, observation of such a faint signal requires excellent control of systematic errors. Interferometry proves to be a promising approach for overcoming such a challenge. In this paper we present a complete simulation pipeline of interferometric observations of CMB polarization, including systematic errors. We employ two different methods for obtaining the power spectra from mock data produced by simulated observations: the maximum likelihood method and the method of Gibbs sampling. We show that the results from both methods …


Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jun 2013

Maximum Likelihood Analysis Of Systematic Errors In Interferometric Observations Of The Cosmic Microwave Background, Le Zhang, Ata Karakci, Paul M. Sutter, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilities and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that does not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately …


Measurement Of Γ-Emission Branching Ratios For 154,156,158Gd Compound Nuclei: Tests Of Surrogate Nuclear Reaction Approximations For (N,Γ) Cross Sections, N. D. Scielzo Mar 2010

Measurement Of Γ-Emission Branching Ratios For 154,156,158Gd Compound Nuclei: Tests Of Surrogate Nuclear Reaction Approximations For (N,Γ) Cross Sections, N. D. Scielzo

Physics Faculty Publications

The surrogate nuclear reaction method can be used to determine neutron-induced reaction cross sections from measured decay properties of a compound nucleus created using a different reaction and calculated formation cross sections. The reliability of (n,γ) cross sections determined using the Weisskopf-Ewing and ratio approximations are explored for the 155, 157Gd(n,γ) reactions. Enriched gadolinium targets were bombarded with 22-MeV protons and γ rays were detected in coincidence with scattered protons using the Silicon Telescope Array for Reaction Studies/Livermore-Berkeley Array for Collaborative Experiments (STARS/LiBerACE) silicon and germanium detector arrays. The γ-emission probabilities for the 154, 156, …