Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing Dec 2011

Achieving Laser Wavelength Stability For Use In Neutral Atom Quantum Computing, Jennifer H. Rushing

Physics

Quantum computing may still be decades away from realization but the pieces necessary for the construction of the first quantum chip are beginning to come together. One piece still eluding researchers is the ability to address individual atoms within a scalable quantum chip structure. The resolution to this issue may be found in any one of several promising implementations, including the use of neutral atoms trapped in 2D optical lattices. One method of constructing such lattices, which has been shown to be computationally viable, employs the diffraction pattern just behind a circular aperture. Laser wavelength stability plays a crucial role …


Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal Nov 2011

Wavelength Dependence Of Transverse Mode Coupling With/Without E-Block Of Gan Laser Cavity, Krishneel Lal

Electrical Engineering

No abstract provided.


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Analysis Of The 2008 Flare Of Markarian 421 Flare With Veritas, Casey Allard Jun 2011

Analysis Of The 2008 Flare Of Markarian 421 Flare With Veritas, Casey Allard

Physics

A theoretical light curve model is fit to an observed short term flare of Markarian (Mrk) 421 in the very high energy spectrum. The flare is characterized by its measured light curve from the Very Energetic Radiation Imaging telescope Array System (VERITAS). The flare we analyzed occurred in May 2008. We successfully fit a theoretical model to the Mrk 421 data light curve. The data appears to agree with the Wagner [1] and Salvati [2] models. These models appear to fit both broad and sharp flaring regions found in the measured light curve. Furthermore the Wagner model is used to …


Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand Jun 2011

Saturated Absorption For A Magneto-Optical Atom Trap As A Step Toward Atomic Dipole Traps In A Diffraction Pattern From A Circular Aperture, Andrew Ferdinand

Physics

Neutral atom quantum computing is a promising avenue toward the realization of a physical quantum computer. The diffraction pattern formed by laser light immediately behind a circular aperture can be used as optical atomic dipole traps, and has the potential to be scaled up to create a two dimensional array of individually addressable qubit sites. In working towards experimental demonstration of the dipole traps, we are constructing a MOT. The function of the MOT is to cool and trap 87Rb in a localized cloud in our vacuum chamber, which will be used to load the dipole traps. One critical …


Laser-Induced Breakdown Spectroscopy, Connor Drake Jun 2011

Laser-Induced Breakdown Spectroscopy, Connor Drake

Physics

The goal of this work is to use a Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) Laser, spectrometer, and computer to create a Laser Induced Breakdown Spectroscopy (LIBS) system. LIBS utilizes a focused, high-powered, pulsed laser whose peak electric field ionizes materials at the beam focal point, creating localized plasma. The plasma state includes broken molecular bonds, atom/electron-ionization, and excited electrons, which on the macroscopic level is a loud “snap” and a bright spark. In this project, a fiber optic cable is used to capture light emitted from the spark, and direct it into a spectrometer which tallies the number of photons …


Projected Pinhole Diffraction, David Moore Jun 2011

Projected Pinhole Diffraction, David Moore

Physics

The goal of this experiment was to observe the effects of passing light through a pinhole, more specifically, to observe the interference and diffraction that occurs due to the pinhole and to successfully achieve CCD camera recording of a projected diffraction pattern from a pinhole. This experiment involved the diffraction of a laser incident upon a 100-mm diameter circular aperture. The diffraction pattern is then projected using a 100-mm focal length plano-convex lens. The lens allows for the pattern to be magnified and stretched a few focal lengths past the lens where it can be then viewed using a CCD …


Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney Jan 2011

Generation Of Mid-Ir Wavelengths, Deborah Robinson, Robert Hartsock, Kelly Gaffney

STAR Program Research Presentations

Generation of mid-IR wavelengths

Deborah Robinson, Robert Hartsock, and Kelly Gaffney

Abstract

Research to determine basic molecular properties utilizing pump/probe experiments is an on going effort at SLAC. Here we have been given the task to generate mid-IR laser pulses and commission a mid-IR detector for said experiments and research. The mid-IR pulses will be used to probe the changes in molecular properties induced by exciting the electrons in molecules with visible pump pulses. In order to accomplish this, an optical parametric amplifier (OPA) has been set-up and aligned. The pump beam for the OPA is a 40 femtosecond 800nm …