Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physics

Construction Of A 408 Nm Laser System For Use In Ion Interferometry, Lawrence Archibald Dec 2015

Construction Of A 408 Nm Laser System For Use In Ion Interferometry, Lawrence Archibald

Theses and Dissertations

This work reports on the construction of a 408 nm laser system designed to drive stimulated Raman transitions between the F = 4 and F = 5 2 S 1/2 states of 87 Sr + using the 2 P 3/2 state as the intermediate state. This laser system will be used as part of a 87 Sr + ion interferometer. This work also includes a discussion of relevant theory describing the interaction of the ions and laser, along with a calculation of the transition rates as a function of laser power and detuning.


Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson Jul 2015

Comparing Theory And Experiment For Analyte Transport In The First Vacuum Stage Of The Inductively Coupled Plasma Mass Spectrometer, Matthew R. Zachreson

Theses and Dissertations

The inductively coupled plasma mass spectrometer (ICP-MS) has been used in laboratories for many years. The majority of the improvements to the instrument have been done empirically through trial and error. A few fluid models have been made, which have given a general description of the flow through the mass spectrometer interface. However, due to long mean free path effects and other factors, it is very difficult to simulate the flow details well enough to predict how changing the interface design will change the formation of the ion beam. Towards this end, Spencer et al. developed FENIX, a direct simulation …


A Feasibility Study Of Photometric Reverberation Mapping With Meter-Class Telescopes, Carla June Carroll Jun 2015

A Feasibility Study Of Photometric Reverberation Mapping With Meter-Class Telescopes, Carla June Carroll

Theses and Dissertations

For the past several decades, mass estimates for supermassive black holes hosted by active galactic nuclei (AGN) have been made with the reverberation mapping (RM) technique. This methodology has produced consistent results and has been used to establish several relations that link the characteristics of the host galaxy to the mass of the central black hole. Despite this success, there are less than 50 AGN with black hole masses derived from RM. This low number is generally attributed to the difficulties in coordinating large blocks of telescope time for making simultaneous photometric and spectroscopic observations. Spectroscopic observations also generally require …


Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland Jun 2015

Characterization Of Order-Disorder Phase Transition Temperature For Select Nanoparticles, Gregory J. Sutherland

Theses and Dissertations

A method was found for creating ordered nanoparticles whose size and theoretical order-disorder temperature are ideal for study in the TEM. Specifically FePt, NiPt, FeNiPt and AuCu nanoparticles were studied. We were able to show how a nanoparticle's size affects its order-disorder temperature (Tod). When the particles were around 6 nm in diameter there was a shift downward of the Tod of 10-15 percent compared to the bulk. While particles around 10 nm in diameter experienced a downward shift of 0-6 percent compared to the bulk. One can approximate that particles less than 10-15 nm in diameter would show significant …


Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade May 2015

Gravitational Waves From Rotating Neutron Stars And Compact Binary Systems, Leslie Wade

Theses and Dissertations

It is widely anticipated that the first direct detections of gravitational waves will be made by advanced gravitational-wave detectors, such as the two Laser Interferometer Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation for the advanced detector era, I have worked on both detection and post-detection efforts involving two gravitational wave sources: isolated rotating neutron stars (NSs) and compact binary coalescences (CBCs). My dissertation includes three main research projects: 1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for directly measuring the neutron-star (NS) …


Self-Force On Accelerated Particles, Thomas Michael Linz May 2015

Self-Force On Accelerated Particles, Thomas Michael Linz

Theses and Dissertations

The likelihood that gravitational waves from stellar-size black holes spiraling into a supermassive black hole would be detectable by a space based gravitational wave observatory has spurred the interest in studying the extreme mass-ratio inspiral (EMRI) problem and black hole perturbation theory (BHP). In this approach, the smaller black hole is treated as a point particle and its trajectory deviates from a geodesic due to the interaction with its own field. This interaction is known as the gravitational self-force, and it includes both a damping force, commonly known as radiation reaction, as well as a conservative force. The computation of …


Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin May 2015

Topics In Broadband Gravitational-Wave Astronomy, Sydney Joanne Chamberlin

Theses and Dissertations

The direct detection of gravitational waves promises to open a new observational window onto the universe, and a number of large scale efforts are underway worldwide to make such a detection a reality. In this work, we attack some of the current problems in gravitational-wave detection over a wide range of frequencies.

In the first part of this work, low frequency gravitational-wave detection is considered using pulsar timing arrays (PTAs). PTAs are a promising tool for probing the universe through gravitational radiation. Supermassive black hole binaries (SMBHBs), cosmic strings, relic gravitational waves from inflation, and first order phase transitions in …


Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade May 2015

Gravitational-Wave Science With The Laser Interferometer Gravitational-Wave Observatory, Madeline Wade

Theses and Dissertations

Gravitational-waves, as predicted by Einstein’s theory of general relativity, are oscillations of spacetime caused by the motion of masses. Although not yet directly detected, there is strong evidence for the existence of gravitational-waves. Detectable gravitational waves will come from dramatic astrophysical events, such as supernova explosions and collisions of black holes. The Laser Interferometer Gravitational-wave Observatory (LIGO) is a network of detectors designed to make the first direct detection of gravitational waves. The upgraded version of LIGO, Advanced LIGO (aLIGO), will offer a dramatic improvement in sensitivity that will virtually guarantee detections.

Gravitational-wave detections will not only illuminate mysterious astrophysical …


Simulations Of Electron Trajectories In An Intense Laser Focus For Photon Scattering Experiments, Grayson J. Tarbox Mar 2015

Simulations Of Electron Trajectories In An Intense Laser Focus For Photon Scattering Experiments, Grayson J. Tarbox

Theses and Dissertations

An experiment currently underway at BYU is designed to test whether the size of a free electron wave packet affects the character of scattered radiation. Using a semi-classical argument wherein the wave packet is treated as a diffuse charge distribution, one would expect strong suppression of radiation in the direction perpendicular to the propagating field as the wave packet grows in size to be comparable to the wavelength of the driving field. If one disallows the interaction of the wave packet with itself, as is the case when calculating the rate of emission using QED, then regardless of size, the …


Radio Emission Toward Regions Of Massive Star Formation In The Large Magellanic Cloud, Adam Johanson Mar 2015

Radio Emission Toward Regions Of Massive Star Formation In The Large Magellanic Cloud, Adam Johanson

Theses and Dissertations

Four regions of massive star formation in the Large Magellanic Cloud (LMC) were observed for water and methanol maser emission and radio continuum emission. A total of 42 radio detections were made including 27 new radio sources, four water masers, and eight compact HII regions. The lobes of a radio galaxy were resolved for the first time, and the host galaxy identified. Seven sources were associated with known massive young stellar objects (YSOs). A multi-wavelength analysis using both the infrared and radio spectrum was used to characterize the sources. Mid-infrared color-magnitude selection criteria for ultracompact HII (UCHII) regions in the …