Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics

2006

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 20 of 20

Full-Text Articles in Physics

Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets Nov 2006

Guiding Of Laser Beams In Plasmas By Radiation Cascade Compression, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

The near-resonant beatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 46403 (2006)]. In the …


Energy In Vectorial Relativity: E ≈ M.C2, Jorge A. Franco Nov 2006

Energy In Vectorial Relativity: E ≈ M.C2, Jorge A. Franco

Jorge A Franco

In previous work it was shown that assumptions, y = y' and z = z’, within Lorentz Transformations were needless, and therefore groundless. Because of such assumptions, Lorentz Transformations (LT) depend on the body’s spatial orientation, i.e. the well-known transverse and longitudinal transformations of magnitudes, characterized by different scaling factors. On the contrary, the development of LT without assumptions, brought about new transformations that do not depend on spatial orientation and a unique mass definition, m = °m /[1 –(v/c)^2]^(3/2). As it is known, Einstein arrived at two definitions: transverse mass mT = °m /[1 –(v/c)^2]^ (1/2) and longitudinal mass …


Gravitation In Vectorial Relativity, Jorge A. Franco Nov 2006

Gravitation In Vectorial Relativity, Jorge A. Franco

Jorge A Franco

It is known that Kepler’s Laws can be derived from the Newton’s Law of Universal Gravitation. For doing this, mass is considered as an invariable parameter. Although this consideration works wonderfully to solve most of problems in astronomy calculations, as in all physics, when body’s speeds are so high and very precise measurements are required, the referred Kepler Laws do not cope enough what is expected. That’s why the General Theory of Relativity materialized. As it was indirectly pointed out by Einstein in 1905, Newton and Kepler Laws do not consider the relativistic variation of mass with its velocity. In …


Posterminaries: After Nabarro, Alexander H. King Nov 2006

Posterminaries: After Nabarro, Alexander H. King

Alexander H. King

With the passing of Frank Nabarro in July of this year, we have lost one of the founding fathers of materials science. His name appears in many of the textbooks from which we train our students today, and also on the spines of several volumes on dislocation theory, including his classic monograph on the subject. He rightly stands among the gods of our field. Ninety years old at his death, he was a sprightly dancer at the frontiers of knowledge, right up to the end.


Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets Oct 2006

Injection, Trapping, And Acceleration Of Electrons In A Three-Dimensional Nonlinear Laser Wakefield, Serguei Y. Kalmykov, Leonid M. Gorbunov, Patrick Mora, Gennady Shvets

Serge Youri Kalmykov

It is demonstrated that the accelerating and focusing phases of the nonlinear three-dimensional axisymmetric laser wake can almost entirely overlap starting from a certain distance behind the laser pulse in homogeneous plasma. Such field structure results from the curvature of phase fronts due to the radially inhomogeneous relativistic shift of plasma frequency. Consequently, the number of trapped low-energy electrons can be much greater than that predicted by the linear wake theory. This effect is favorable for quasi-monoenergetic acceleration of a considerable charge (several hundreds of pC) to about 1 GeV per electron in the plasma wakefield driven by an ultrashort …


Snapshots Of Laser Wakefields, Nicholas H. Matlis, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Pascal Rousseau, Victor Yanovsky, Anatoly Maksimchuk, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer Oct 2006

Snapshots Of Laser Wakefields, Nicholas H. Matlis, Steven A. Reed, Stepan S. Bulanov, Vladimir Chvykov, Galina Kalintchenko, Takeshi Matsuoka, Pascal Rousseau, Victor Yanovsky, Anatoly Maksimchuk, Serguei Y. Kalmykov, Gennady Shvets, Michael C. Downer

Serge Youri Kalmykov

Tabletop plasma accelerators can now produce GeV-range electron beams and femtosecond X-ray pulses, providing compact radiation sources for medicine, nuclear engineering, materials science and high-energy physics. In these accelerators, electrons surf on electric fields exceeding 100 GeV m^{−1}, which is more than 1,000 times stronger than achievable in conventional accelerators. These fields are generated within plasma structures (such as Langmuir waves or electron density ‘bubbles’) propagating near light speed behind laser or charged-particle driving pulses. Here, we demonstrate single-shot visualization of laser-wakefield accelerator structures for the first time. Our ‘snapshots’ capture the evolution of multiple wake periods, detect structure variations …


Posterminaries: The Scales Of Judgement, Alexander H. King Sep 2006

Posterminaries: The Scales Of Judgement, Alexander H. King

Alexander H. King

Materials scientists are generally well-versed in physics, and physics, above all, is a science of measurements. The first instinct of a physicist is to parse a problem in terms of its measurables in the dimensions of mass, length, and time, and it is the shifting of attention down the scale of length that particularly characterizes our present times as the Nano Age.


A New Application Of The Channel Packet Method For Low Energy 1-D Elastic Scattering, Clint M. Zeringue Sep 2006

A New Application Of The Channel Packet Method For Low Energy 1-D Elastic Scattering, Clint M. Zeringue

Theses and Dissertations

An algorithm is presented which uses the channel packet method (CPM) to simulate low-energy, wave-packet propagation and compute S-matrix elements. A four-by-four matrix containing the momentum, expansion coefficients of the reactants and products is introduced to account for initial and final states having both positive and negative momentum. The approach does not consider scattering from one side or the other, rather it considers both incoming and outgoing wave packets from the left and right simultaneously. Therefore, during one simulation all four S-matrix elements, and elements, S+k,-K, S-k, +k, S+k, +k and S-k,-k are computed. …


Compression Of Laser Radiation In Plasmas Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Apr 2006

Compression Of Laser Radiation In Plasmas Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

A train of few-laser-cycle relativistically intense radiation spikes with a terahertz repetition rate can be organized self-consistently in plasma from two frequency detuned co-propagating laser beams of low intensity. Large frequency bandwidth for the compression of spikes is produced via laser-induced periodic modulation of the plasma refractive index. The beat-wave-driven electron plasma wave downshifted from the plasma frequency creates a moving index grating thus inducing a periodic phase modulation of the driving laser (in spectral terms, electromagnetic cascading). The group velocity dispersion compresses the chirped laser beat notes to a few-cycle duration and relativistic intensity either concurrently in the same, …


Nonlinear Evolution Of The Plasma Beat Wave: Compressing The Laser Beat Notes Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets Mar 2006

Nonlinear Evolution Of The Plasma Beat Wave: Compressing The Laser Beat Notes Via Electromagnetic Cascading, Serguei Y. Kalmykov, Gennady Shvets

Serge Youri Kalmykov

The near-resonant beat wave excitation of an electron plasma wave (EPW) can be employed for generating the trains of few-femtosecond electromagnetic (EM) pulses in rarefied plasmas. The EPW produces a comoving index grating that induces a laser phase modulation at the difference frequency. As a result, the cascade of sidebands red and blue shifted by integer multiples of the beat frequency is generated in the laser spectrum. The bandwidth of the phase-modulated laser is proportional to the product of the plasma length, laser wavelength, and amplitude of the electron density perturbation. When the beat frequency is lower than the electron …


Vectorial Lorentz Transformations, Jorge A. Franco Feb 2006

Vectorial Lorentz Transformations, Jorge A. Franco

Jorge A Franco

We have noticed in relativistic literature that the derivation of Lorentz Transformations (LT) usually is presented by confining the moving system O’ to move along the X-axis, namely, as a particular case of a more general movement. When this movement is generalized different transformations are obtained (which is a contradiction by itself) and a hidden vectorial characteristic of time is revealed. LT have been generalized in order to solve some physical and mathematical inconsistencies, such as the dissimilar manners (transversal, longitudinal) the particle’s shape is influenced by its velocity and LT’s inconsistency with Maxwell equations when in its derivation the …


Posterminaries: Plain Text, Alexander H. King Jan 2006

Posterminaries: Plain Text, Alexander H. King

Alexander H. King

You just can’t win an argument with an English professor.


Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2006

Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

Thermal effects on domain orientation in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated by using in situ x-ray diffraction with an area detector. In the case of a soft PZT, it is found that the texture parameter called multiples of a random distribution (MRD) initially increases with temperature up to approximately 100 °C and then falls to unity at temperatures approaching the Curie temperature, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. The relationship between the mechanical strain energy and domain wall mobility with temperature is discussed.


Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia Jan 2006

Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia

Faculty Publications

This paper discusses the evaluation of hydrodynamic variables in the presence of spontaneous fluctuations, such as in molecular simulations of fluid flows. The principal point is that hydrodynamic variables such as fluid velocity and temperature must be defined in terms of mechanical variables such as momentum and energy density). Because these relations are nonlinear and because fluctuations of mechanical variables are correlated, care must be taken to avoid introducing a bias when evaluating means, variances, and correlations of hydrodynamic variables. The unbiased estimates are formulated; some alternative, incorrect approaches are presented as cautionary warnings. The expressions are verified by numerical …


The Motion Of A Thin Liquid Film Driven By Surfactant And Gravity, Michael Shearer, Rachel Levy Jan 2006

The Motion Of A Thin Liquid Film Driven By Surfactant And Gravity, Michael Shearer, Rachel Levy

All HMC Faculty Publications and Research

We investigate wave solutions of a lubrication model for surfactant-driven flow of a thin liquid film down an inclined plane. We model the flow in one space dimension with a system of nonlinear PDEs of mixed hyperbolic-parabolic type in which the effects of capillarity and surface diffusion are neglected. Numerical solutions reveal distinct patterns of waves that are described analytically by combinations of traveling waves, some with jumps in height and surfactant concentration gradient. The various waves and combinations are strikingly different from what is observed in the case of flow on a horizontal plane. Jump conditions admit new shock …


The Asymptotics Of Neutral Curve Crossing In Taylor–Dean Flow, C. P. Hills, A. P. Bassom Jan 2006

The Asymptotics Of Neutral Curve Crossing In Taylor–Dean Flow, C. P. Hills, A. P. Bassom

Articles

The fluid flow between a pair of coaxial circular cylinders generated by the uniform rotation of the inner cylinder and an azimuthal pressure gradient is susceptible to both Taylor and Dean type instabilities. The flow can be characterised by two parameters: a measure of the relative magnitude of the rotation and pressure effects and a non-dimensional Taylor number. This work considers the small gap, large wavenumber limit for linear perturbations when the onset of the Taylor and Dean instabilities is concurrent. A consistent, matched asymptotic solution is found across the whole annular domain and identifies five regions of interest: two …


Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia Jan 2006

Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia

Alejandro Garcia

This paper discusses the evaluation of hydrodynamic variables in the presence of spontaneous fluctuations, such as in molecular simulations of fluid flows. The principal point is that hydrodynamic variables such as fluid velocity and temperature must be defined in terms of mechanical variables such as momentum and energy density). Because these relations are nonlinear and because fluctuations of mechanical variables are correlated, care must be taken to avoid introducing a bias when evaluating means, variances, and correlations of hydrodynamic variables. The unbiased estimates are formulated; some alternative, incorrect approaches are presented as cautionary warnings. The expressions are verified by numerical …


An Undular Bore Solution For The Higher-Order Korteweg-De Vries Equation, Tim Marchant Dec 2005

An Undular Bore Solution For The Higher-Order Korteweg-De Vries Equation, Tim Marchant

Tim Marchant

Undular bores describe the evolution and smoothing out of an initial step in mean height and are frequently observed in both oceanographic and meteorological applications. The undular bore solution for the higher-order Korteweg-de Vries (KdV) equation is derived, using an asymptotic transformation which relates the KdV equation and its higher-order counterpart. The higher-order KdV equation considered includes all possible third-order correction terms (where the KdV equation retains second-order terms). The asymptotic transformation is then applied to the KdV undular bore solution to obtain the higher-order undular bore. Examples of higher-order undular bores, describing both surface and internal waves, are presented. …


Solitary Wave Interaction And Evolution For A Higher-Order Hirota Equation, Tim Marchant Dec 2005

Solitary Wave Interaction And Evolution For A Higher-Order Hirota Equation, Tim Marchant

Tim Marchant

Solitary wave interaction and evolution for a higher-order Hirota equation is examined. The higher-order Hirota equation is asymptotically transformed to a higher-order member of the NLS hierarchy of integrable equations, if the higher-order coefficients satisfy a certain algebraic relationship. The transformation is used to derive higher-order one- and two-soliton solutions. It is shown that the interaction is asymptotically elastic and the higher-order corrections to the coordinate and phase shifts are derived. For the higher-order Hirota equation resonance occurs between the solitary waves and linear radiation, so soliton perturbation theory is used to determine the details of the evolving wave and …


Modelling A Wool Scour Bowl, Tim Marchant Dec 2005

Modelling A Wool Scour Bowl, Tim Marchant

Tim Marchant

Wool scouring is the process of washing dirty wool after shearing. Our model simulates, using the advection-diffusion equation, the movement of contaminants within a scour bowl. The effects of varying the important parameters are investigated. Interesting, but simple, relationships are found which give insight into the dynamics of a scour bowl.