Open Access. Powered by Scholars. Published by Universities.®
Articles 1 - 1 of 1
Full-Text Articles in Meteorology
Relative Importance Of Radar Variables For Nowcasting Heavy Rainfall: A Machine Learning Approach, Yi Victor Wang, Seung Hee Kim, Geunsu Lyu, Choeng-Lyong Lee, Gyuwon Lee, Ki-Hong Min, Menas C. Kafatos
Relative Importance Of Radar Variables For Nowcasting Heavy Rainfall: A Machine Learning Approach, Yi Victor Wang, Seung Hee Kim, Geunsu Lyu, Choeng-Lyong Lee, Gyuwon Lee, Ki-Hong Min, Menas C. Kafatos
Institute for ECHO Articles and Research
Highly short-term forecasting, or nowcasting, of heavy rainfall due to rapidly evolving mesoscale convective systems (MCSs) is particularly challenging for traditional numerical weather prediction models. To overcome such a challenge, a growing number of studies have shown significant advantages of using machine learning (ML) modeling techniques with remote sensing data, especially weather radar data, for high-resolution rainfall nowcasting. To improve ML model performance, it is essential first and foremost to quantify the importance of radar variables and identify pertinent predictors of rainfall that can also be associated with domain knowledge. In this study, a set of MCS types consisting of …