Open Access. Powered by Scholars. Published by Universities.®

Other Oceanography and Atmospheric Sciences and Meteorology

San Jose State University

Articles 1 - 2 of 2

Full-Text Articles in Meteorology

The Mean And Turbulent Properties Of A Wildfire Convective Plume, Neil Lareau, Craig Clements Aug 2017

The Mean And Turbulent Properties Of A Wildfire Convective Plume, Neil Lareau, Craig Clements

Faculty Publications, Meteorology and Climate Science

The time-mean and time-varying smoke and velocity structure of a wildfire convective plume is examined using a high-resolution scanning Doppler lidar. The mean plume is shown to exhibit the archetypal form of a bent-over plume in a crosswind, matching the well-established Briggs plume-rise equation. The plume cross section is approximately Gaussian and the plume radius increases linearly with height, consistent with plumerise theory. The Briggs plume-rise equation is subsequently inverted to estimate the mean fire-generated sensible heat flux, which is found to be 87 kW m22 . The mean radial velocity structure of the plume indicates flow convergence into the …


Estimating Methane Emissions From Biological And Fossil-Fuel Sources In The San Francisco Bay Area, Seongeun Jeong, Xinguang Cui, Donald Blake, Ben Miller, Stephen Montzka, Arlyn Andrews, Abhinav Guha, Philip Martien, Ray Bambha, Brian Lafranchi, Hope Michelsen, Craig Clements, Pierre Glaize, Marc Fischer Jan 2017

Estimating Methane Emissions From Biological And Fossil-Fuel Sources In The San Francisco Bay Area, Seongeun Jeong, Xinguang Cui, Donald Blake, Ben Miller, Stephen Montzka, Arlyn Andrews, Abhinav Guha, Philip Martien, Ray Bambha, Brian Lafranchi, Hope Michelsen, Craig Clements, Pierre Glaize, Marc Fischer

Faculty Publications, Meteorology and Climate Science

We present the first sector-specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September – December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil-fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source-specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166–289 Gg CH4/yr (at 95% confidence), 1.3–2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, …