Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Meteorology

Examining The Impact Of Stratospheric Vortex Variability On Us Surface Temperature, Elena M. Fernandez Aug 2022

Examining The Impact Of Stratospheric Vortex Variability On Us Surface Temperature, Elena M. Fernandez

Legacy Theses & Dissertations (2009 - 2024)

Variability in high-latitude stratospheric flow, including major sudden stratospheric warming (SSW) or strong polar vortex events, can modulate tropospheric circulation and have meteorological implications on surface temperature and weather. The largest tropospheric impacts from Northern Hemisphere stratospheric variability – and the regions of focus in the literature – are observed in the North Atlantic, Europe and Asia. Impacts on North America occur but have received less research attention. The goal of this thesis research is to identify and quantify the relationship between high-latitude stratospheric variability and North American wintertime temperature.Using the ERA-Interim and ERA-5 reanalysis for the period of 1999/2000–2018/19, …


Version 1.3 Aim Sofie Measured Methane (Ch4): Validation And Seasonal Climatology, P. P. Rong, J. M. Russell Iii, B. T. Marshall, D. E. Siskind, M. E. Hervig, L. L. Gordley, P. F. Bernath, K. A. Walker Nov 2016

Version 1.3 Aim Sofie Measured Methane (Ch4): Validation And Seasonal Climatology, P. P. Rong, J. M. Russell Iii, B. T. Marshall, D. E. Siskind, M. E. Hervig, L. L. Gordley, P. F. Bernath, K. A. Walker

Chemistry & Biochemistry Faculty Publications

The V1.3 methane (CH4) measured by the Aeronomy of Ice in the Mesosphere (AIM) Solar Occultation for Ice Experiment (SOFIE) instrument is validated in the vertical range of ~25–70 km. The random error for SOFIE CH4 is ~0.1–1% up to ~50 km and degrades to ~9% at ∼ 70 km. The systematic error remains at ~4% throughout the stratosphere and lower mesosphere. Comparisons with CH4 data taken by the SCISAT Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) show an agreement within ~15% in the altitude range ~30–60 …


Global Stratospheric Fluorine Inventory For 2004-2009 From Atmospheric Chemistry Experiment Fourier Transform Spectrometer (Ace-Fts) Measurements And Slimcat Model Simulations, A. T. Brown, M. P. Chipperfield, N. A. D. Richards, C. Boone, P. F. Bernath Jan 2014

Global Stratospheric Fluorine Inventory For 2004-2009 From Atmospheric Chemistry Experiment Fourier Transform Spectrometer (Ace-Fts) Measurements And Slimcat Model Simulations, A. T. Brown, M. P. Chipperfield, N. A. D. Richards, C. Boone, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

Fluorine-containing species can be extremely effective atmospheric greenhouse gases. We present fluorine budgets using organic and inorganic species retrieved by the ACE-FTS satellite instrument supplemented with output from the SLIMCAT 3-D chemical transport model. The budgets are calculated between 2004 and 2009 for a number of latitude bands: 70-30 °N, 30-00 °N, 00 °N-30 °S, and 30-70°S. At lower altitudes total fluorine profiles are dominated by the contribution from CFC-12, up to an altitude of 20 km in the extra-tropics and 29 km in the tropics; above these altitudes the profiles are dominated by hydrogen fluoride (HF). Our data show …


The Relation Between Atmospheric Humidity And Temperature Trends For Stratospheric Water, S. Fueglistaler, Y. S. Liu, T. J. Flannaghan, P. H. Haynes, D. P. Dee, W. J. Read, E. E. Remsberg, L. W. Thomason, D. F. Hurst, J. R. Lanzante, P. F. Bernath Jan 2013

The Relation Between Atmospheric Humidity And Temperature Trends For Stratospheric Water, S. Fueglistaler, Y. S. Liu, T. J. Flannaghan, P. H. Haynes, D. P. Dee, W. J. Read, E. E. Remsberg, L. W. Thomason, D. F. Hurst, J. R. Lanzante, P. F. Bernath

Chemistry & Biochemistry Faculty Publications

We analyze the relation between atmospheric temperature and water vapor-a fundamental component of the global climate system-for stratospheric water vapor (SWV). We compare measurements of SWV (and methane where available) over the period 1980-2011 from NOAA balloon-borne frostpoint hygrometer (NOAA-FPH), SAGE II, Halogen Occultation Experiment (HALOE), Microwave Limb Sounder (MLS)/Aura, and Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) to model predictions based on troposphere-to-stratosphere transport from ERA-Interim, and temperatures from ERA-Interim, Modern Era Retrospective- Analysis (MERRA), Climate Forecast System Reanalysis (CFSR), Radiosonde Atmospheric Temperature Products for Assessing Climate (RATPAC), HadAT2, and RICHv1.5. All model predictions are dry biased. The interannual …


Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian Oct 2010

Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian

Faculty Publications, Meteorology and Climate Science

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade …


Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian Oct 2010

Chemistry–Climate Model Simulations Of Twenty-First Century Stratospheric Climate And Circulation Changes, Neal Butchart, I. Cionni, V. Eyring, T. G. Shepherd, D. W. Waugh, H. Akiyoshi, J. Austin, C. Brühl, M. P. Chipperfield, Eugene C. Cordero, M. Dameris, R. Deckert, S. Dhomse, S. M. Frith, R. R. Garcia, A. Gettelman, M. A. Giorgetta, D. E. Kinnison, F. Li, E. Mancini, S. Pawson, G. Pitari, D. A. Plummer, E. Rozanov, F. Sassi, J. F. Scinocca, K. Shibata, B. Steil, W. Tian

Eugene C. Cordero

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade …