Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Meteorology

The Extratropical Transition Of Tropical Cyclones. Part I: Cyclonic Evolution And Direct Impacts, Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Et Al. Nov 2017

The Extratropical Transition Of Tropical Cyclones. Part I: Cyclonic Evolution And Direct Impacts, Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Et Al.

Publications

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review …


Mobile Radar As An Undergraduate Education And Research Tool: The Erau C-Breese Field Experience With The Doppler On Wheels, Shawn M. Milrad, Christopher G. Herbster Sep 2017

Mobile Radar As An Undergraduate Education And Research Tool: The Erau C-Breese Field Experience With The Doppler On Wheels, Shawn M. Milrad, Christopher G. Herbster

Publications

Embry-Riddle Aeronautical University Convective-Boundary Research Engaging Educational Student Experiences (ERAU C-BREESE) was an 18-day National Science Foundation (NSF)-funded educational Doppler on Wheels (DOW) deployment through the Center for Severe Weather Research in May 2015. ERAU C-BREESE had three primary areas of focus: meteorological field observations and research, undergraduate experiential learning, and local community outreach. ERAU undergraduate meteorology students had the unique opportunity to forecast for, collect, and analyze field measurements of sea-breeze processes and convection. The scientific objectives of ERAU C-BREESE were to forecast, observe, and analyze central Florida sea-breeze processes and thunderstorms by combining a DOW with more traditional …