Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Meteorology

The Extratropical Transition Of Tropical Cyclones. Part I: Cyclonic Evolution And Direct Impacts, Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Et Al. Nov 2017

The Extratropical Transition Of Tropical Cyclones. Part I: Cyclonic Evolution And Direct Impacts, Clark Evans, Kimberly M. Wood, Sim D. Aberson, Heather M. Archambault, Shawn M. Milrad, Lance F. Bosart, Et Al.

Publications

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review …


Evaluation And Predictability Of Observation-Based Surface Wind Asymmetric Structure In Tropical Cyclones, Bradley Klotz Mar 2017

Evaluation And Predictability Of Observation-Based Surface Wind Asymmetric Structure In Tropical Cyclones, Bradley Klotz

FIU Electronic Theses and Dissertations

Surface wind speeds are an important and revealing component of the structure of tropical cyclones (TCs). To understand the asymmetric structure of surface winds in TCs associated with differences in formation region, environmental wind shear, storm forward motion, and TC strength and intensification, a twelve year database of satellite scatterometer data are utilized to produce composite total wind speed and Fourier-derived, low wavenumber analyses. A quantified asymmetry is determined as a function of TC intensity and reveals the tropical storms are influenced by wind shear at all TC-centric radii but only for areas away from the radius of maximum wind …


Tropical Cyclone Intensification Under Moderate Vertical Wind Shear, Rosimar Rios-Berrios Jan 2017

Tropical Cyclone Intensification Under Moderate Vertical Wind Shear, Rosimar Rios-Berrios

Legacy Theses & Dissertations (2009 - 2024)

Deep-layer (200–850 hPa) vertical wind shear is generally an inhibiting factor for tropical cyclone intensification. Multiple studies—ranging from case studies to climatological analyses—have consistently shown that the chances of tropical cyclone intensification decrease with increasing vertical wind shear magnitude. However, tropical cyclones can intensify under moderate shear—the range of shear magnitudes that are neither too weak to have negligible influence on intensity nor too strong to completely halt intensification. Intensity, track, and precipitation forecasts of tropical cyclones under moderate shear can be highly uncertain; therefore, explaining how tropical cyclones evolve under seemingly unfavorable conditions is an important step towards improved …