Open Access. Powered by Scholars. Published by Universities.®

Other Earth Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Articles 1 - 12 of 12

Full-Text Articles in Other Earth Sciences

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Yuanyuan Huang, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations of CH4 emission and its pathways, …


Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo Apr 2022

Evaluating Alternative Ebullition Models For Predicting Peatland Methane Emission And Its Pathways Via Data–Model Fusion, Shuang Ma, Lifen Jiang, Rachel M. Wilson, Jeff P. Chanton, Scott Bridgham, Shuli Niu, Colleen M. Iversen, Avni Malhotra, Jiang Jiang, Xingjie Lu, Jason Keller, Xiaofeng Xu, Daniel M. Ricciuto, Paul J. Hanson, Yiqi Luo

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding the dynamics of peatland methane (CH4) emissions and quantifying sources of uncertainty in estimating peatland CH4 emissions are critical for mitigating climate change. The relative contributions of CH4 emission pathways through ebullition, plant-mediated transport, and diffusion, together with their different transport rates and vulnerability to oxidation, determine the quantity of CH4 to be oxidized before leaving the soil. Notwithstanding their importance, the relative contributions of the emission pathways are highly uncertain. In particular, the ebullition process is more uncertain and can lead to large uncertainties in modeled CH4 emissions. To improve model simulations …


Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani Feb 2022

Landslide Detection In The Himalayas Using Machine Learning Algorithms And U-Net, Sansar Raj Meena, Lucas Pedrosa Soares, Carlos H. Grohmann, Cees Van Westen, Kushanav Bhuyan, Ramesh P. Singh, Mario Floris, Filippo Catani

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Event-based landslide inventories are essential sources to broaden our understanding of the causal relationship between triggering events and the occurring landslides. Moreover, detailed inventories are crucial for the succeeding phases of landslide risk studies like susceptibility and hazard assessment. The openly available inventories differ in the quality and completeness levels. Event-based landslide inventories are created based on manual interpretation, and there can be significant differences in the mapping preferences among interpreters. To address this issue, we used two different datasets to analyze the potential of U-Net and machine learning approaches for automated landslide detection in the Himalayas. Dataset-1 is composed …


Catastrophic Ice-Debris Flow In The Rishiganga River, Chamoli, Uttarakhand (India), Vijendra Kumar Pandey, Rajesh Kumar, Rupendra Singh, Rajesh Kumar, Suresh Chand Rai, Ramesh P. Singh, Arun Kumar Tripathi, Vijay Kumar Soni, S. Nawaz Ali, Dakshina Tamang, Syed Umer Latief Jan 2022

Catastrophic Ice-Debris Flow In The Rishiganga River, Chamoli, Uttarakhand (India), Vijendra Kumar Pandey, Rajesh Kumar, Rupendra Singh, Rajesh Kumar, Suresh Chand Rai, Ramesh P. Singh, Arun Kumar Tripathi, Vijay Kumar Soni, S. Nawaz Ali, Dakshina Tamang, Syed Umer Latief

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A catastrophic flood occurred on 7 February 2021 around 10:30 AM (local time) in the Rishiganga River, which has been attributed to a rockslide in the upper reach of the Raunthi River. The Resourcesat 2 LISS IV (8 February 2021) and CNES Airbus satellite imagery (9 February 2021) clearly show the location of displaced materials. The solar radiation observed was higher than normal by 10% and 25% on 6 and 7 February 2021, respectively, however, the temperature shows up to 34% changes. These conditions are responsible for the sudden change in instability in glacier blocks causing deadly rock-ice slides that …


Progressive Destabilization And Triggering Mechanism Analysis Using Multiple Data For Chamoli Rockslide Of 7 February 2021, Wenfei Mao, Lixin Wu, Ramesh P. Singh, Yuan Qi, Busheng Xie, Yingjia Liu, Yifan Ding, Zilong Zhou, Jia Li Dec 2021

Progressive Destabilization And Triggering Mechanism Analysis Using Multiple Data For Chamoli Rockslide Of 7 February 2021, Wenfei Mao, Lixin Wu, Ramesh P. Singh, Yuan Qi, Busheng Xie, Yingjia Liu, Yifan Ding, Zilong Zhou, Jia Li

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

A catastrophic rockslide occurred on 7 February 2021 in Chamoli area in the high Himalaya. In the absence of field data, multiple satellites data of decade span have been used to investigate and understand the progressive destabilization of rockslide body. A 3D geometric model was developed using geospatial information about geology, terrain, and ice cover to understand the triggering mechanism. Several causes are uncovered as: the pronounced long-term change of land surface temperature facilitated local permafrost degradation and led to ice cover shrinking since 2010; the occurrence of ice avalanche nearby in 2016 accompanying with sidewall-to-bedrock fracturing enhanced the ice …


Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton Oct 2021

Radiocarbon Analyses Quantify Peat Carbon Losses With Increasing Temperature In A Whole Ecosystem Warming Experiment, Rachel M. Wilson, Natalie A. Griffiths, Ate Visser, Karis J. Mcfarlane, Stephen D. Sebestyen, Keith C. Oleheiser, Samantha Bosman, Anya M. Hopple, Malak M. Tfaily, Randall K. Kolka, Paul J. Hanson, Joel E. Kostka, Scott D. Bridgham, Jason K. Keller, Jeffrey P. Chanton

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Climate warming is expected to accelerate peatland degradation and release rates of carbon dioxide (CO2) and methane (CH4). Spruce and Peatlands Responses Under Changing Environments is an ecosystem-scale climate manipulation experiment, designed to examine peatland ecosystem response to climate forcings. We examined whether heating up to +9 °C to 3 m-deep in a peat bog over a 7-year period led to higher C turnover and CO2 and CH4 emissions, by measuring 14C of solid peat, dissolved organic carbon (DOC), CH4, and dissolved CO2 (DIC). DOC, a major substrate for heterotrophic respiration, increased significantly with warming. There was no 7-year trend …


Carbon Fluxes And Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw, M. P. Waldrop, J. W. Mcfarland, K. L. Manies, M. C. Leewis, S. J. Blazewicz, M. C. Jones, R. B. Neumann, Jason K. Keller, L. Cohen, E. S. Euskirchen, C. Edgar, M. R. Turetsky, W. L. Cable Feb 2021

Carbon Fluxes And Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw, M. P. Waldrop, J. W. Mcfarland, K. L. Manies, M. C. Leewis, S. J. Blazewicz, M. C. Jones, R. B. Neumann, Jason K. Keller, L. Cohen, E. S. Euskirchen, C. Edgar, M. R. Turetsky, W. L. Cable

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13 …


Rapid Mapping Of Landslides In The Western Ghats (India) Triggered By 2018 Extreme Monsoon Rainfall Using A Deep Learning Approach, Sansar Raj Meena, Omid Ghorbanzadeh, Cees J. Van Westen, Thimmaiah Gudiyangada Nachappa, Thomas Blaschke, Ramesh P. Singh, Raju Sarkar Jan 2021

Rapid Mapping Of Landslides In The Western Ghats (India) Triggered By 2018 Extreme Monsoon Rainfall Using A Deep Learning Approach, Sansar Raj Meena, Omid Ghorbanzadeh, Cees J. Van Westen, Thimmaiah Gudiyangada Nachappa, Thomas Blaschke, Ramesh P. Singh, Raju Sarkar

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rainfall-induced landslide inventories can be compiled using remote sensing and topographical data, gathered using either traditional or semi-automatic supervised methods. In this study, we used the PlanetScope imagery and deep learning convolution neural networks (CNNs) to map the 2018 rainfall-induced landslides in the Kodagu district of Karnataka state in theWestern Ghats of India.We used a fourfold cross-validation (CV) to select the training and testing data to remove any random results of the model. Topographic slope data was used as auxiliary information to increase the performance of the model. The resulting landslide inventory map, created using the slope data with the …


Changes In Atmospheric, Meteorological, And Ocean Parameters Associated With The 12 January 2020 Taal Volcanic Eruption, Feng Jing, Akshansa Chauhan, Ramesh P. Singh, Prasanjit Dash Mar 2020

Changes In Atmospheric, Meteorological, And Ocean Parameters Associated With The 12 January 2020 Taal Volcanic Eruption, Feng Jing, Akshansa Chauhan, Ramesh P. Singh, Prasanjit Dash

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

The Taal volcano erupted on 12 January 2020, the first time since 1977. About 35 mild earthquakes (magnitude greater than 4.0) were observed on 12 January 2020 induced from the eruption. In the present paper, we analyzed optical properties of volcanic aerosols, volcanic gas emission, ocean parameters using multi-satellite sensors, namely, MODIS (Moderate Resolution Imaging Spectroradiometer), AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) and ground observations, namely, Argo, and AERONET (AErosol RObotic NETwork) data. Our detailed analysis shows pronounced changes in all the parameters, which mainly occurred in the western and south-western regions because the …


Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith May 2018

Predicting Spatial Patterns In Precipitation Isotope (Δ2h And Δ18o) Seasonality Using Sinusoidal Isoscapes, Scott T. Allen, James W. Kirchner, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Understanding how precipitation isotopes vary spatially and temporally is important for tracer applications. We tested how well month‐to‐month variations in precipitation δ18O and δ2H were captured by sinusoidal cycles, and how well spatial variations in these seasonal cycles could be predicted, across Switzerland. Sine functions representing seasonal cycles in precipitation isotopes explained between 47% and 94% of the variance in monthly δ18O and δ2H values at each monitoring site. A significant sinusoidal cycle was also observed in line‐conditioned excess. We interpolated the amplitudes, phases, and offsets of these sine functions across the landscape, using multiple linear …


What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi Oct 2017

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, …


Optical Characterization And Distribution Of Chromophoric Dissolved Organic Matter (Cdom) In Soil Porewater From A Salt Marsh Ecosystem, Catherine D. Clark, Paige Aiona, Jason K. Keller, Warren J. De Bruyn Dec 2014

Optical Characterization And Distribution Of Chromophoric Dissolved Organic Matter (Cdom) In Soil Porewater From A Salt Marsh Ecosystem, Catherine D. Clark, Paige Aiona, Jason K. Keller, Warren J. De Bruyn

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

To characterize chromophoric dissolved organic matter (CDOM) in marsh porewaters and its contribution as a carbon source, optical properties (absorbance, fluorescence indices, 3-dimensional excitation-emission matrices [EEMs]) of soil porewater and surface water were measured in a southern Californian salt marsh. Absorption coefficients and fluorescence intensities were higher in porewater than in overlying surface waters, consistent with higher CDOM concentration at depth. Humic-type peaks A and C were observed in EEMs in all samples, and peak M was observed in surface waters and shallow porewater to -5 cm depth. Fluorescence:absorbance (flu:abs) ratios and spectral slopes (S) decreased across the surface interface, …