Open Access. Powered by Scholars. Published by Universities.®

Theory and Algorithms Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Theory and Algorithms

Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji Oct 2023

Deep Reinforcement Learning With Explicit Context Representation, Francisco Munguia-Galeano, Ah-Hwee Tan, Ze Ji

Research Collection School Of Computing and Information Systems

Though reinforcement learning (RL) has shown an outstanding capability for solving complex computational problems, most RL algorithms lack an explicit method that would allow learning from contextual information. On the other hand, humans often use context to identify patterns and relations among elements in the environment, along with how to avoid making wrong actions. However, what may seem like an obviously wrong decision from a human perspective could take hundreds of steps for an RL agent to learn to avoid. This article proposes a framework for discrete environments called Iota explicit context representation (IECR). The framework involves representing each state …


A Secure And Robust Knowledge Transfer Framework Via Stratified-Causality Distribution Adjustment In Intelligent Collaborative Services, Ju Jia, Siqi Ma, Lina Wang, Yang Liu, Robert H. Deng Jan 2023

A Secure And Robust Knowledge Transfer Framework Via Stratified-Causality Distribution Adjustment In Intelligent Collaborative Services, Ju Jia, Siqi Ma, Lina Wang, Yang Liu, Robert H. Deng

Research Collection School Of Computing and Information Systems

The rapid development of device-edge-cloud collaborative computing techniques has actively contributed to the popularization and application of intelligent service models. The intensity of knowledge transfer plays a vital role in enhancing the performance of intelligent services. However, the existing knowledge transfer methods are mainly implemented through data fine-tuning and model distillation, which may cause the leakage of data privacy or model copyright in intelligent collaborative systems. To address this issue, we propose a secure and robust knowledge transfer framework through stratified-causality distribution adjustment (SCDA) for device-edge-cloud collaborative services. Specifically, a simple yet effective density-based estimation is first employed to obtain …


Online Multitask Relative Similarity Learning, Shuji Hao, Peilin Zhao, Yong Liu, Steven C. H. Hoi, Chunyan Miao Aug 2017

Online Multitask Relative Similarity Learning, Shuji Hao, Peilin Zhao, Yong Liu, Steven C. H. Hoi, Chunyan Miao

Research Collection School Of Computing and Information Systems

Relative similarity learning (RSL) aims to learn similarity functions from data with relative constraints. Most previous algorithms developed for RSL are batch-based learning approaches which suffer from poor scalability when dealing with real world data arriving sequentially. These methods are often designed to learn a single similarity function for a specific task. Therefore, they may be sub-optimal to solve multiple task learning problems. To overcome these limitations, we propose a scalable RSL framework named OMTRSL (Online Multi-Task Relative Similarity Learning). Specifically, we first develop a simple yet effective online learning algorithm for multi-task relative similarity learning. Then, we also propose …


Modeling Trajectories With Recurrent Neural Networks, Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, Wei Wang Aug 2017

Modeling Trajectories With Recurrent Neural Networks, Hao Wu, Ziyang Chen, Weiwei Sun, Baihua Zheng, Wei Wang

Research Collection School Of Computing and Information Systems

Modeling trajectory data is a building block for many smart-mobility initiatives. Existing approaches apply shallow models such as Markov chain and inverse reinforcement learning to model trajectories, which cannot capture the long-term dependencies. On the other hand, deep models such as Recurrent Neura lNetwork (RNN) have demonstrated their strength of modeling variable length sequences. However, directly adopting RNN to model trajectories is not appropriate because of the unique topological constraints faced by trajectories. Motivated by these findings, we design two RNN-based models which can make full advantage of the strength of RNN to capture variable length sequence and meanwhile to …


Object Detection Meets Knowledge Graphs, Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, Vijay Chandrasekhar Aug 2017

Object Detection Meets Knowledge Graphs, Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, Vijay Chandrasekhar

Research Collection School Of Computing and Information Systems

Object detection in images is a crucial task in computer vision, with important applications ranging from security surveillance to autonomous vehicles. Existing state-of-the-art algorithms, including deep neural networks, only focus on utilizing features within an image itself, largely neglecting the vast amount of background knowledge about the real world. In this paper, we propose a novel framework of knowledge-aware object detection, which enables the integration of external knowledge such as knowledge graphs into any object detection algorithm. The framework employs the notion of semantic consistency to quantify and generalize knowledge, which improves object detection through a re-optimization process to achieve …


Shortest Path Based Decision Making Using Probabilistic Inference, Akshat Kumar Feb 2016

Shortest Path Based Decision Making Using Probabilistic Inference, Akshat Kumar

Research Collection School Of Computing and Information Systems

We present a new perspective on the classical shortest path routing (SPR) problem in graphs. We show that the SPR problem can be recast to that of probabilistic inference in a mixture of simple Bayesian networks. Maximizing the likelihood in this mixture becomes equivalent to solving the SPR problem. We develop the well known Expectation-Maximization (EM) algorithm for the SPR problem that maximizes the likelihood, and show that it does not get stuck in a locally optimal solution. Using the same probabilistic framework, we then address an NP-Hard network design problem where the goal is to repair a network of …


Online Arima Algorithms For Time Series Prediction, Chenghao Liu, Hoi, Steven C. H., Peilin Zhao, Jianling Sun Jan 2016

Online Arima Algorithms For Time Series Prediction, Chenghao Liu, Hoi, Steven C. H., Peilin Zhao, Jianling Sun

Research Collection School Of Computing and Information Systems

Autoregressive integrated moving average (ARIMA) is one of the most popular linear models for time series forecasting due to its nice statistical properties and great flexibility. However, its parameters are estimated in a batch manner and its noise terms are often assumed to be strictly bounded, which restricts its applications and makes it inefficient for handling large-scale real data. In this paper, we propose online learning algorithms for estimating ARIMA models under relaxed assumptions on the noise terms, which is suitable to a wider range of applications and enjoys high computational efficiency. The idea of our ARIMA method is to …


Message Passing For Collective Graphical Models, Tao Sun, Daniel Sheldon, Akshat Kumar Jul 2015

Message Passing For Collective Graphical Models, Tao Sun, Daniel Sheldon, Akshat Kumar

Research Collection School Of Computing and Information Systems

Collective graphical models (CGMs) are a formalism for inference and learning about a population of independent and identically distributed individuals when only noisy aggregate data are available. We highlight a close connection between approximate MAP inference in CGMs and marginal inference in standard graphical models. The connection leads us to derive a novel Belief Propagation (BP) style algorithm for collective graphical models. Mathematically, the algorithm is a strict generalization of BP—it can be viewed as an extension to minimize the Bethe free energy plus additional energy terms that are non-linear functions of the marginals. For CGMs, the algorithm is much …


Designing A Portfolio Of Parameter Configurations For Online Algorithm Selection, Aldy Gunawan, Hoong Chuin Lau, Mustafa Misir Jan 2015

Designing A Portfolio Of Parameter Configurations For Online Algorithm Selection, Aldy Gunawan, Hoong Chuin Lau, Mustafa Misir

Research Collection School Of Computing and Information Systems

Algorithm portfolios seek to determine an effective set of algorithms that can be used within an algorithm selection framework to solve problems. A limited number of these portfolio studies focus on generating different versions of a target algorithm using different parameter configurations. In this paper, we employ a Design of Experiments (DOE) approach to determine a promising range of values for each parameter of an algorithm. These ranges are further processed to determine a portfolio of parameter configurations, which would be used within two online Algorithm Selection approaches for solving different instances of a given combinatorial optimization problem effectively. We …