Open Access. Powered by Scholars. Published by Universities.®

Other Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Other Chemistry

Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue Jan 2022

Methanol Decomposition On Ni(111) And O/Ni(111), Henrik Öström, Bingjie Zhang, Tiffany Vallejo, Bryn Merrill, Jeremy Huang, Jerry Larue

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Methanol decomposition on Ni(111) surfaces has been studied in the presence and absence of oxygen using temperature-programmed desorption and temperature-dependent sum frequency generation spectroscopy. Under both conditions the C–H and O–H bonds break, forming carbon monoxide and atomic hydrogen on the surface. No C–O bond scission was observed, limiting the number of reaction pathways. The O–H bonds break first (>150 K), forming surface methoxy, followed by C–H bond breakage (>250 K). All atomic hydrogen desorbs from the surface as H2 through H+H recombinative desorption. H2 desorbs at a higher temperature in the presence of oxygen (>300 K) …


Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham Sep 2021

Oxidation Alters The Architecture Of The Phenylalanyl-Trna Synthetase Editing Domain To Confer Hyperaccuracy, Pooja Srinivas, Rebecca E. Steiner, Ian J. Pavelich, Ricardo Guerrera-Ferreira, Puneet Juneja, Michael Ibba, Christine M. Dunham

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

High fidelity during protein synthesis is accomplished by aminoacyl-tRNA synthetases (aaRSs). These enzymes ligate an amino acid to a cognate tRNA and have proofreading and editing capabilities that ensure high fidelity. Phenylalanyl-tRNA synthetase (PheRS) preferentially ligates a phenylalanine to a tRNAPhe over the chemically similar tyrosine, which differs from phenylalanine by a single hydroxyl group. In bacteria that undergo exposure to oxidative stress such as Salmonella enterica serovar Typhimurium, tyrosine isomer levels increase due to phenylalanine oxidation. Several residues are oxidized in PheRS and contribute to hyperactive editing, including against mischarged Tyr-tRNAPhe, despite these oxidized residues not …


Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith Mar 2019

Seasonal Origins Of Soil Water Used By Trees, Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, Gregory R. Goldsmith

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Rain recharges soil water storages and either percolates downward into aquifers and streams or is returned to the atmosphere through evapotranspiration. Although it is commonly assumed that summer rainfall recharges plant-available water during the growing season, the seasonal origins of water used by plants have not been systematically explored. We characterize the seasonal origins of waters in soils and trees by comparing their midsummer isotopic signatures (δ2H) to seasonal isotopic cycles in precipitation, using a new seasonal origin index. Across 182 Swiss forest sites, xylem water isotopic signatures show that summer rain was not the predominant water source …


Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary Dec 2018

Vibrational Analysis Of A Rate-Slowing Conformational Kinetic Isotope Effect, O. Maduka Ogba, Zichen Liu, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

An enthalpy-entropy approach to analyzing a rate-slowing conformational kinetic isotope effect (CKIE) in a deuterated doubly-bridged biaryl system is described. The computed isotope effect (kH/kD = 1.075, 368 K) agrees well with the measured value (kH/kD = 1.06, 368 K). The rateslowing (normal isotope effect) nature of the computed CKIE is shown to originate from a vibrational entropy contribution defined by the twenty lowest frequency normal modes in the ground state and transition state structures. This normal entropy contribution is offset by an inverse vibrational enthalpy contribution, which also arises from the twenty lowest frequency normal modes. Zero point vibrational …


Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson Dec 2018

Atom-Specific Activation In Co Oxidation, Simon Schreck, Elias Diesen, Jerry Larue, Hirohito Ogasawara, Kess Marks, Dennis Nordlund, Matthew Weston, Martin Beye, Filippo Cavalca, Fivos Perakis, Jonas Sellberg, André Eilert, Kyung Hwan Kim, Giacomo Coslovich, Ryan Coffee, Jacek Krzywinski, Alex Reid, Stefan Moeller, Alberto Lutman, Henrik Öström, Lars G. M. Pettersson, Anders Nilsson

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft …


1h And 13c Nmr Assignments For (N-Methyl)-(−)-(Α)-Isosparteinium Iodide And (N-Methyl)-(−)-Sparteinium Iodide, Kavoos Kolahdouzan, O. Maduka Ogba, Daniel J. O'Leary Aug 2018

1h And 13c Nmr Assignments For (N-Methyl)-(−)-(Α)-Isosparteinium Iodide And (N-Methyl)-(−)-Sparteinium Iodide, Kavoos Kolahdouzan, O. Maduka Ogba, Daniel J. O'Leary

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

(‒)-Sparteine (1) and (–)-(α)-isosparteine (2) are members of the lupine alkaloid family.[1-2] Sparteine has found extensive use in asymmetric organic transformations, including lithiations[3] and Pd-catalyzed oxidations.[4-7] (α)-Isosparteine, which can be made from sparteine, has been utilized as a chiral ligand for a limited number of stereoselective reactions.[8-9] The two compounds differ in that 1 displays an exo-endo arrangement of the bridgehead hydrogens at C-11 and C-6, respectively, while 2 retains an exo-exo arrangement of these atoms (Figure 1). This study is focused on assigning 1H chemical shifts and coupling constants and 13C chemical shifts for N-methyl …


No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade Nov 2017

No Evidence For Trace Metal Limitation On Anaerobic Carbon Mineralization In Three Peatland Soils, Jason K. Keller, Jillian Wade

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Peatlands store roughly one-third of the terrestrial soil carbon and release the potent greenhouse gas methane (CH4) to the atmosphere, making these wetlands among the most important ecosystems in the global carbon cycle. Despite their importance, the controls of anaerobic decomposition of organic matter to carbon dioxide (CO2) and CH4 within peatlands are not well understood. It is known, however, that the enzymes responsible for CH4 production require cobalt, iron and nickel, and there is a growing appreciation for the potential role of trace metal limitation in anaerobic decomposition. To explore the possibility of …


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …


Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury Jul 2017

Cellular And Molecular Targets Of Menthol Actions, Murat Oz, Eslam El Nebrisi, Keun-Hang Susan Yang, Frank Christopher Howarth, Lina T. Al Kury

Mathematics, Physics, and Computer Science Faculty Articles and Research

Menthol belongs to monoterpene class of a structurally diverse group of phytochemicals found in plant-derived essential oils. Menthol is widely used in pharmaceuticals, confectionary, oral hygiene products, pesticides, cosmetics, and as a flavoring agent. In addition, menthol is known to have antioxidant, anti-inflammatory, and analgesic effects. Recently, there has been renewed awareness in comprehending the biological and pharmacological effects of menthol. TRP channels have been demonstrated to mediate the cooling actions ofmenthol. There has been new evidence demonstrating thatmenthol can significantly influence the functional characteristics of a number of different kinds of ligand and voltage-gated ion channels, indicating that at …


Mida Boronates Are Hydrolysed Fast And Slow By Two Different Mechanisms, Jorge A. Gonzalez, O. Maduka Ogba, Gregory F. Morehouse, Nicholas Rosson, Kendall N. Houk, Andrew G. Leach, Paul H.-Y. Cheong, Martin D. Burke, Guy C. Lloyd-Jones Jul 2016

Mida Boronates Are Hydrolysed Fast And Slow By Two Different Mechanisms, Jorge A. Gonzalez, O. Maduka Ogba, Gregory F. Morehouse, Nicholas Rosson, Kendall N. Houk, Andrew G. Leach, Paul H.-Y. Cheong, Martin D. Burke, Guy C. Lloyd-Jones

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

MIDA boronates (N-methylimidodiacetic boronic acid esters) serve as an increasingly general platform for building-block-based small molecule construction, largely due to the dramatic and general rate differences with which they are hydrolysed under various basic conditions. Yet the mechanistic underpinnings of these rate differences have remained unclear, hindering efforts to address current limitations of this chemistry. Here we show that there are two distinct mechanisms for this hydrolysis: one is base-mediated and the other neutral. The former can proceed more than three orders of magnitude faster, and involves rate-limiting attack at a MIDA carbonyl carbon by hydroxide. The alternative ‘neutral’ hydrolysis …


Theoretical Investigation Of Interaction Between The Set Of Ligands And Α7 Nicotinic Acetylcholine Receptor, O. E. Glukhova, Tatiana Prytkova, D. S. Shmygin Mar 2016

Theoretical Investigation Of Interaction Between The Set Of Ligands And Α7 Nicotinic Acetylcholine Receptor, O. E. Glukhova, Tatiana Prytkova, D. S. Shmygin

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between …