Open Access. Powered by Scholars. Published by Universities.®

Other Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Other Chemistry

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta Sep 2021

Atomistic Simulations And In Silico Mutational Profiling Of Protein Stability And Binding In The Sars-Cov-2 Spike Protein Complexes With Nanobodies: Molecular Determinants Of Mutational Escape Mechanisms, Gennady M. Verkhivker, Steve Agajanian, Deniz Yasar Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

Structure-functional studies have recently revealed a spectrum of diverse high-affinity nanobodies with efficient neutralizing capacity against SARS-CoV-2 virus and resilience against mutational escape. In this study, we combine atomistic simulations with the ensemble-based mutational profiling of binding for the SARS-CoV-2 S-RBD complexes with a wide range of nanobodies to identify dynamic and binding affinity fingerprints and characterize the energetic determinants of nanobody-escaping mutations. Using an in silico mutational profiling approach for probing the protein stability and binding, we examine dynamics and energetics of the SARS-CoV-2 complexes with single nanobodies Nb6 and Nb20, VHH E, a pair combination VHH E + …