Open Access. Powered by Scholars. Published by Universities.®

Other Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Other Chemistry

Instrument And Application Development In Saturation Recovery And Rapid Scan Electron Paramagnetic Resonance, Joseph E. Mcpeak Jan 2020

Instrument And Application Development In Saturation Recovery And Rapid Scan Electron Paramagnetic Resonance, Joseph E. Mcpeak

Electronic Theses and Dissertations

Enhanced signal sensitivity by the use of Rapid Scan (RS) electron paramagnetic resonance (EPR), a technique that allows for much faster magnetic field scans than traditional field-swept techniques, has facilitated improved data acquisition for many types of samples. For example, irradiated fingernails for radiation dosimetry have been studied using RS-EPR, which resulted in substantial decreases in detection limits. Samarium-mediated reduction mechanisms in organic synthesis have been investigated by RS-EPR providing evidence for a radical intermediate. Spectra of organic radicals exhibiting both narrow lines and closely spaced hyperfine interactions have been recorded via RS-EPR. Well-resolved spectra can be recorded at a …


Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater Jan 2018

Surfactant Driven Assembly Of Freeze-Casted, Polymer-Derived Ceramic Nanoparticles On Grapehene Oxide Sheets For Lithium-Ion Battery Anodes, Ali Zein Khater

Honors Undergraduate Theses

Traditional Lithium-Ion Batteries (LIBs) are a reliable and cost-efficient choice for energy storage. LIBs offer high energy density and low self-discharge. Recent developments in electric-based technologies push for replacing historically used Lead-Acid batteries with LIBs. However, LIBs do not yet meet the demands of modern technology. Silicon and graphene oxide (GO) have been identified as promising replacements to improve anode materials. Graphene oxide has a unique sheet-like structure that provides a mechanically stable, light weight material for LIB anodes. Due to its structure, reduced graphene oxide (rGO) is efficiently conductive and resistive to environmental changes. On the other hand, silicon-based …


Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang Jul 2017

Understanding The Surface Fouling Mechanism Of Ultrananocrystalline Diamond Microelectrodes Using Microfluidics For Neurochemical Detection, An-Yi Chang

Doctoral Dissertations

Electrochemical methods are widely used for chronic neurochemical sensing, but thus far, the organic solution redox reactions fouled the electrodes' surface. It caused the reduction of sensitivity and the electrodes' lifetime.

Here, we present the boron-doped nanocrystalline diamond microelectrodes (BDUNCD) as the next generation electrode material for neurochemical sensor development. To aid in long-term chronic monitoring of neurochemicals, they have a wide window of electrochemical potential, extremely low background current, and excellent chemical inertness. The main research goal is to reduce the rate of electrode fouling due to the reaction by-products, and significantly extend their useful lifetime.

We systematically characterize …


Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal Jul 2017

Electrochemical Behavior Of Dense Electrodes For Impedancemetric Nox Sensors, Nabamita Pal

Doctoral Dissertations

NOx (NO and NO2) exhaust gas sensors for diesel powered vehicles have traditionally consisted of porous platinum (Pt) electrodes along with a dense ZrO2 based electrolyte. Advancement in diesel engine technology results in lower NOx emissions. Although Pt is chemically and mechanically tolerant to the extreme exhaust gas environment, it is also a strong catalyst for oxygen reduction, which can interfere with the detection of NOx at concentrations below 100 ppm. Countering this behavior can add to the complexity and cost of the conventional NO x sensor design. Recent studies have shown that dense electrodes are less prone to heterogeneous …


Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell May 2016

Direct Band Gap Gallium Antimonide Phosphide (Gasbxp1-X) For Solar Fuels., Harry Benjamin Russell

Electronic Theses and Dissertations

Photoelectrochemical water splitting has been identified as a promising route for achieving sustainable energy future. However, semiconductor materials with the appropriate optical, electrical and electrochemical properties have yet to be discovered. In search of an appropriate semiconductor to fill this gap, GaSbP, a semiconductor never tested for PEC performance is proposed here and investigated. Density functional theory (DFT+U) techniques were utilized to predict band gap and band edge energetics for GaSbP alloys with low amount of antimony. The overall objective of this dissertation is to understand the suitability of GaSbxP1-x alloys for photoelectrochemical water splitting application. Specifically, …