Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Chemistry

Teaching An Old Dog New Tricks: Synthesis And Applications Of Novel Polybenzimidazole (Pbi) Membranes, Laura Ann Murdock Oct 2021

Teaching An Old Dog New Tricks: Synthesis And Applications Of Novel Polybenzimidazole (Pbi) Membranes, Laura Ann Murdock

Theses and Dissertations

Polybenzimidazoles (PBIs) represent a class of performance polymers that display exceptional thermal and oxidative stability. For almost thirty years, PBI membranes have been investigated as promising candidates for next-generation alternative energy devices, including high temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) and vanadium redox flow batteries (VRBs). Issues with the production of PBI membranes arise from their inherent low solubility in organic solvents. Thus, conventional approaches typically yield membranes that have limited molecular weight and generate significant waste in preparation, due to the large quantity of solvent required to dissolve PBIs for membrane casting.

Presented herein is the development of …


Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha Sep 2021

Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha

Doctoral Dissertations

Nature has designed magnificent responsive systems by constructing several interacting molecular level networks for the recognition and propagation of chemical and biochemical information. One of the eminent characteristics of these systems is their capability to quickly transduce molecular scale recognition events into macroscopic or visually observable responses. Inspired by these systems present in nature, we became interested in developing artificial responsive systems with similar capabilities. This dissertation will feature four such systems that employ amphiphilic oligomers and polymers which were chosen as the scaffolds because of their high thermodynamic stability, low critical aggregation concentrations, convenient handles to incorporate functional group …


Design Of Antioxidant Monomer, Augustine Osilamah Yusuf Jul 2021

Design Of Antioxidant Monomer, Augustine Osilamah Yusuf

Masters Theses & Specialist Projects

Reactive oxygen species such as hydrogen peroxide are present at the sites of inflammation in the body. Degradable polymeric nanoparticles have shown great promise in a range of biomedical applications which include preferential delivery of therapeutics to such inflamed sites. We are working towards a new class of materials expected to have tunable degradation rates in the presence of hydrogen peroxide. These new materials consist of three parts: degradable linkages, antioxidant groups, and unreactive filler monomers such as methylmethacrylate. We have synthesized a polymerization initiator with a degradable linkage, and we have shown that using this initiator to synthesize another …


Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng Apr 2021

Electrospinning Fibers Via Complex Coacervation, Xiangxi Meng

Doctoral Dissertations

Electrospun fibers are high-surface-area materials widely used in applications ranging from batteries to wound dressings. Typically, an electrospinning precursor solution is prepared by dissolving a high-molecular-weight polymer in an organic solvent to form a sufficiently entangled solution. Our approach bypasses the requirement for entanglements and completely avoids toxic chemicals by focusing on using an aqueous complex coacervates solution. Coacervates are a dense, polymer-rich liquid phase resulting from the associative electrostatic complexation of oppositely charged macroions. We were the first to demonstrate that liquid complex coacervates could be successfully electrospun into polyelectrolyte complex (PEC) fibers. A canonical coacervate system was formed …


Characterization, Immobilization, And Polymer Related Applications Of Watermelon Seed Powder, A Practical Source Of Urease Enzyme, Anthony Quan Quoc Mai Feb 2021

Characterization, Immobilization, And Polymer Related Applications Of Watermelon Seed Powder, A Practical Source Of Urease Enzyme, Anthony Quan Quoc Mai

LSU Doctoral Dissertations

Urease enzyme was crystallized almost a century ago, and to this day its intrinsic stability is not ideal for everyday applications. This work introduces a new process by which a naturally encapsulated material, watermelon seed powder (WMSP), is characterized for its stability and activity. WMSP enzymatic activity has been measured for over a year at various storage conditions—exposed to ambient atmosphere for a year, WMSP retained above 90% activity. In aqueous conditions, the enzyme maintained above 60% activity after two months; with the addition of a preservative that number stays at about 90%. There is a pH shift of the …


Degradation Of Natural And Synthetic Fibers In Various Aqueous Environments, Jaylin Bryant Jan 2021

Degradation Of Natural And Synthetic Fibers In Various Aqueous Environments, Jaylin Bryant

Honors Scholars Collaborative Projects

Fabrics are one variant of polymers, macromolecules that form the foundation of our society. They consist of small subunits called monomers, which are covalently bonded together and layered over each other through intermolecular attractions. There are natural fabrics, such as cotton and silk, and synthetic fabrics like polyester and rayon. Scientists in forensic taphonomy study postmortem changes made to human remains, which can also include clothes found at the scene. In this study, the degradation rates of four white fabrics (cotton, polyester, rayon, and silk) were observed in various aqueous environments (pure, chlorinated, sea, and lake) in order to observe …


Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin Jan 2021

Establishing Independent Tunability Of The Mechanical And Transport Properties Of Polymer Gels, Lucas Rankin

Master’s Theses

Polymer gels can be used in the fabrication of materials for filtering liquid and gaseous media, solid-state electrolytes, and transdermal medical patches. This diverse range of applications primarily relies on the transport and mechanical properties of polymer gels. Both sets of properties have shown excellent tunability, but typically in a coupled fashion. Establishing the independent tunability of the transport and mechanical properties of polymer gels (using simple, cost-effective methods) is paramount if polymer gels are to be used to their full potential. Specifically, block copolymer gels self-assemble into organized nanoscale networks within the gel solvent, which allows for facile control …


Fabrication, Characterization And Environmental Monitoring Of Polymer-Based Materials For Biomedical And Structural Applications, Mousumi Bose Jan 2021

Fabrication, Characterization And Environmental Monitoring Of Polymer-Based Materials For Biomedical And Structural Applications, Mousumi Bose

Doctoral Dissertations

"Polymers are versatile materials utilized for variety of applications. In biomedical field, luminescence quenching based optical oxygen sensors encapsulated in polymeric substances are gaining attention for early detection of surface wounds associated with tissue oxygen. A simple and low-cost fabrication technique was developed to produce sensor arrays for continuous two-dimensional oxygen tension measurement. Sensor patch along with smart phone-based readout technique is being evaluated as a smart bandage.

The environmental concerns and limited petroleum supply demand for replacing petroleum-based polymers with renewable bio-based sources while maintaining comparable properties. A sustainable and green approach was adopted to synthesize soy polyol-derived rigid …


Advances In Polymer Based Friedlander Quinoline Synthesis, Rajendra Patil, Jagdish Chavan, Shivnath Patel, Anil Beldar Jan 2021

Advances In Polymer Based Friedlander Quinoline Synthesis, Rajendra Patil, Jagdish Chavan, Shivnath Patel, Anil Beldar

Turkish Journal of Chemistry

Nitrogen containing heterocyclic compounds has acquired their remarkable and distinct place in the wide area of organic synthesis due to the broad range of applications. Among them, quinoline motifs have attracted researchers in the synthetic chemistry because of its presence in the large number of pharmacologically active compounds. Different methods for synthesis of quinoline derivatives are reported, among them the Friedlander synthesis have provided comparatively more efficient approach. Many of the reported conventional Friedlander methodologies have some problems such as difficult product isolation procedures, poor yields and use of expensive catalysts, etc. Recently, polymer or solid supported synthetic approaches have …