Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Chemistry

Electrochemical Studies Of Organic And Organometallic Compounds In The Pursuit Of Electrocatalytic Carbon Dioxide Reduction, Joshua J. Ludtke Aug 2021

Electrochemical Studies Of Organic And Organometallic Compounds In The Pursuit Of Electrocatalytic Carbon Dioxide Reduction, Joshua J. Ludtke

College of Science and Health Theses and Dissertations

Carbon dioxide is the main contributor to the greenhouse effect in the world today; developing renewable energy sources and addressing anthropogenic CO2 release into the atmosphere are two key ways of addressing its increasing impact. Electrocatalytic reduction to products like methanol or carbon monoxide is one useful path to address the rapid increase of carbon dioxide, and the fac-M(bpy-R)(CO)3X family of complexes (M = Mn or Re; bpy-R = substituted 2,2’-bipyridine; X = Cl, Br, etc.) is one class of effective CO2 reduction catalysts. Although the capability of the rhenium complex Re(PyBimH)(CO)3Cl (PyBimH …


Recent Studies On The Synthesis Of Medicinal Molecules., Paige Monsen Aug 2021

Recent Studies On The Synthesis Of Medicinal Molecules., Paige Monsen

Electronic Theses and Dissertations

Medicinal chemistry interfaces synthetic organic chemistry, natural product chemistry and chemical biology, with a goal of yielding therapeutic agents. Natural products or compounds derived from natural sources such as plants, animals, and microorganisms, are often biologically active and render that compound a likely drug lead. For thousands of years humankind has utilized natural products for medicinal purposes and consequently scientists take advantage of both these compounds’ core structural characteristics and their modes of actions on selected targets as inspiration to develop therapeutics. Because the total synthesis of such complex molecules can be cumbersome and expensive, semi-synthetic methods on isolated natural …


Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett Jul 2021

Investigation Of Factors Influencing Recombination Versus Disproportionation Of Complex Radicals Formed By C-N Homolysis Of Breslow Type Intermediates And Related Compounds, Taylor Burnett

Graduate Theses and Dissertations

Electron rich enamines are capable of C-N bond homolysis and subsequent recombination and/or disproportionation. It is unclear what causes these radicals to undergo recombination or disproportionation. Density Functional Theory (DFT) calculations do not provide a transition state for the recombination and disproportionation processes and therefore they cannot be used to predict the favorable reaction. Breslow intermediates formed by deprotonation of thiazolium salts and reaction with aromatic aldehydes are examples of electron rich enamines. These breslow intermediates can undergo C-N bond homolysis to form a radical pair the either recombine or disproportionate. Upon investigation of the factors influencing recombination and disproportionation, …


Emergent Photophysics In Diketopyrrolopyrrole Superstructures, Andrew Levine Jun 2021

Emergent Photophysics In Diketopyrrolopyrrole Superstructures, Andrew Levine

Dissertations, Theses, and Capstone Projects

Organic semiconductors have received substantial attention as active components in optoelectronic devices because of their processability and customizable electronic properties. Tailoring the organic active layer in these devices to exhibit desirable optoelectronic properties requires understanding the complex and often subtle structure-property relationships governing their photophysical response to light. Both structural organization and frontier molecular orbitals (FMO) play pivotal roles in energy relaxation processes, and complex interplay between organization and orbital energies are difficult to anticipate based upon the molecular structure of the components alone, especially in systems comprised of multiple components. In pursuit of design rules, there is a need …


Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le May 2021

Applications Of Sodium Azide In The Synthesis Of Tetrazines And Hydrolysis Reactions, My Le

Honors Theses

The inverse electron demand Diels−Alder cycloadditions of heterocyclic azadienes have provided a robust methodology for synthesizing highly substituted and functionalized heterocycles. It is widely used in organic synthesis and the pharmaceutical industry in the divergent construction of screening libraries and bioorthogonal conjugation. Each heterocyclic azadiene was found to possess a unique reactivity toward different classes of dienophiles, display predictable modes of cycloaddition, and exhibit substantial substituent electronic effects impacting their intrinsic reactivity and cycloaddition regioselectivity. Synthesis of 1,2,4,5-tetrazine has been reported in the literature since the late 19th century, showing scientists' tremendous interest in its application.

Herein we attempt to …


The Synthesis Of Photoswitchable Triptan Derivatives, Chelsea Sainsbury May 2021

The Synthesis Of Photoswitchable Triptan Derivatives, Chelsea Sainsbury

Honors College

Serotonin has various functions throughout the body and directly effects many neurological diseases/disorders, like depression, that are linked to the dysregulation of serotonin. Triptans are indole containing drugs that bind to a subset of serotonin receptors (5-HT1Band 5-HT1D) and are used to treat migraines. In this project, the synthesis of anindole intermediate is attempted. Ideally, an azobenzene would have been added to the 5th position (replacing the primary amine). Azobenzenes are compounds composed of 2 benzene rings connected by a nitrogen-nitrogen double bond that can switch between cis and trans conformations by absorbing different wavelengths of light. The transformation of …


Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden Apr 2021

Nitro Group Reduction For Use In Organic, Cathodic Materials, Brock G. Goeden

Honors Thesis

The industrial demand for higher capacity, light-weight battery materials has skyrocketed in recent years due to heavy investments in portable electronics, electronic vehicles, and renewable energy sources. However, rechargeable battery technology has seen little improvement since the invention of the Lithium-Ion battery in the 1980s. The low energy density of the traditionally utilized LiCoO2 cathodic material (specific capacity: 272 mAh g-1), has limited its potential to meet these increasing demands. To solve this problem, our research group is investigating new types of lightweight, organic, polymeric materials with conductive backbones as a possible replacement for the cathodic materials in Lithium-Ion batteries. …


Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador Mar 2021

Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador

Honors Theses

NIR emissive fluorophores are intensely researched due to their potential to replace modern imaging procedures. Many molecular strategies have been employed in the literature to optimize fluorophores for deeper NIR absorption and emission, biocompatibility, and higher fluorescence quantum yields. Amongst the fluorophores studied to date, proaromatic indolizine donors are attractive alternatives to traditional alkyl amine and indoline based donors due to their 1) lower energy absorption and emission facilitated by proaromaticity, 2) large Stokes shifts due to increased dihedral angles about the π-system, 3) ease of functionalization and capacity for bioconjugation at the phenyl ring, and 4) potential for further …


Computational Analysis Beyond The Monomer Frontier Orbitals For Photovoltaic Donor-Polymer Candidates, Mitchell E. Lahm, Megan M. Niblock, John M. Migliore, Kendra M. Mckenzie, Hans P. Lüthi, Rollin A. King Jan 2021

Computational Analysis Beyond The Monomer Frontier Orbitals For Photovoltaic Donor-Polymer Candidates, Mitchell E. Lahm, Megan M. Niblock, John M. Migliore, Kendra M. Mckenzie, Hans P. Lüthi, Rollin A. King

Chemistry Faculty Publications

Scharber et al. proposed an efficiency model for organic photovoltaic cells based on the orbital energies of the monomers of the donor- and acceptor- polymers [Advanced Materials 18 (2006) 789–794]. We report theoretical extensions of this approach. First, the frontier-orbital energies and electronic spectra of n-length oligomers (n = 1 − 5) of 3-butylthiophene have been determined. The results show reasonable convergence with respect to system size at the point of a trimer with alkyl end caps. The HOMO-LUMO gap well matches computed excitation energies. Second, the structures and electronic spectra of dimers formed by three different monomers, with various …