Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

2021

Articles 1 - 30 of 41

Full-Text Articles in Chemistry

Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon Dec 2021

Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon

Doctoral Dissertations

As technology advances to harness new energies and to create new cures, the sophistication of analysis grows not only in depth but in efficiency. Total internal reflection (TIR) has been coupled to microscopy leveraging its unique optical phenomenon on a breadth of topics. In this dissertation, the work presented will show how TIR was applied in two different instrumental analyses to evaluate two unique and complex systems. The first project features TIR paired with the transient absorption microscopy (TAM), a nonlinear optical technique, to gauge solvent mixing and diffusion in microreactors. Microreactors gained acclaim for their ability to produce high …


Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser Dec 2021

Instrument Development For High Sensitivity Size Characterization Of Lipid Vesicles And Other Biological Macromolecules Via Taylor Dispersion Analysis, Meagan Moser

Doctoral Dissertations

Just as humans communicate with other humans, the cells in our bodies communicate with each other through various, often complex, mechanisms. Cell-to-cell transmission of small molecules, lipids, proteins, peptides, or nucleic acids can be mediated by extracellular lipid vesicles called exosomes. Exosomes have been found to play a role in the delivery of regulatory molecules from one cell to another, serving as a universal communication mechanism. Currently, there is an emerging focus on characterizing exosome communication dynamics. Understanding exosome mechanisms of cell-to-cell communication requires accurate measurements of the spatiotemporal and chemical dynamics of exosome secretion. No current analytical approach offers …


Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao Dec 2021

Application Of Single-Ion Conducting Polymer Electrolytes (Sicpes), Sheng Zhao

Doctoral Dissertations

Polymer electrolytes have been widely studied as a potential candidate for next generation batterie with improved safety and higher energy density. Especially, single-ion conducting polymer electrolytes (SICPEs) have attracted significant attention due to their almost unity lithium-ion transport number, which is believed to help suppress lithium dendrite growth and extend battery cycle life. However, there is still a long way to go before they can be practically applied in batteries, due to their relatively low ionic conductivity at ambient temperature. Therefore, the main goal of this work is to explore various methods that can improve the ionic conductivity of SICPEs …


Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey Dec 2021

Production And Adsorption Of Volatile Tellurium Hexafluoride, Stephanie H. Bruffey

Doctoral Dissertations

Research and development supporting the management of off-gases from nuclear fuel reprocessing has historically been focused on the off-gas streams that arise from aqueous reprocessing technology. With the advent of advanced reactor designs off-gas streams arising from advanced reprocessing methodology, such as that of FV [fluoride volatility] processing, also merit consideration. This work focuses on TeF6 [tellurium hexafluoride], one of the most volatile radioactive compounds produced during FV, and investigates TeF6 production, measurement, and abatement technologies.

To assist in on-line monitoring of TeF6 by Fourier-transformed infrared spectroscopy, this work systematically used the ideal gas law and Beer’s …


Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves Dec 2021

Analytical Considerations And Methods For Comprehensive Analysis Of Bacterial Phospholipidomics Using Hilic-Ms/Ms, David Thomas Reeves

Doctoral Dissertations

Omics technologies have rapidly evolved over the last half century through vast improvements in efficient extraction methodologies, advances in instrumentation for data collection, and a wide assortment of informatics tools to help deconvolute sample data sets. However, there are still untapped pools of molecules that warrant further analytical attention. As the frontline defense of the cell against exterior influences, the phospholipid membrane is key in structure, defense, and signaling, but current omics studies are only just now catching up to the potential hidden within cellular lipid profiles. Examination of shifts in phospholipid speciation and character could provide researchers with a …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao Dec 2021

Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao

Doctoral Dissertations

Renewable energy storage systems are regarded as the solution to the environmental and energy crises caused by the burning of fossil fuels in vehicles. Unfortunately, owning to the limits to the electrochemical performance of the current anode materials, lithium-ion batteries [LIBs] are still lacking strength in the charging rate-capability and thereby cannot fulfill future application requirements in electrical vehicles [EVs].

Particularly, graphite with a high theoretical specific capacity of 372 mAh/g is unsuitable for EVs due to the safety concerns of passivating solid-electrolyte interphase [SEI] resulted from the low operation potential of 0.1 V versus Li/Li+. The other …


Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky Oct 2021

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky

Doctoral Dissertations

The spread of antibiotic resistant bacteria around the world has become a major public health issue, and it is essential that effective detection methods exist for identifying these organisms and preventing them from spreading throughout our food systems and into the environment. The goal of this research is to develop a novel analytical procedure that is capable of easily identifying antibiotic resistance in bacterial samples, and also provides more information about the biochemical characteristics of the bacteria and their responses to antibiotic exposure. Surface-enhanced Raman Spectroscopy (SERS), an analytical technique that uses light scattering to produce a spectrum based on …


Computational Approaches For The Multimodal Imaging Of Nanomaterials And Their Biochemical Effects, Laura J. Castellanos Oct 2021

Computational Approaches For The Multimodal Imaging Of Nanomaterials And Their Biochemical Effects, Laura J. Castellanos

Doctoral Dissertations

Nanomaterial delivery systems constitute a group of drug delivery vehicles that have been used extensively in biodelivery. The proper characterization of the therapeutic function of these nanomaterials requires analytical methods to track the presence of the cargo and its biochemical effects. In some cases, the detection of the cargo and biochemical changes are not attainable in the same experiment, and more than one technique might be needed for the proper analysis of the drug delivery system. In this case, separate analysis of adjacent tissue sections is performed by techniques that offer complementary information such as MALDI-MS and LA-ICP-MS. However, the …


Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda Oct 2021

Advanced Materials Design Using Application-Based Processing Techniques, Daniel S. Camarda

Doctoral Dissertations

This dissertation pertains to generating advanced materials using application-based processing techniques. First, billets consisting of PTFE sintering powders are evaluated using Thermomechancal Analysis. It was found that both shape change and volume change are associated with enthalpic and entropic recoil, respectively. These phenomena, due to melting and stored energy during the powder compaction process, were found to be molecular weight dependent. Additionally, kinetics of the recovery and sintering process were found to be slower in blended specimens than pure samples. Next, the creation of graft copolymers by selectively grafting a second polymer to the amorphous fraction of a semi-crystalline polymer …


Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden Oct 2021

Amyloidogenesis Of Β-2-Microglobulin Studied By Mass Spectrometry And Covalent Labeling, Blaise G. Arden

Doctoral Dissertations

Amyloid-forming proteins are implicated in a number of debilitating diseases. While many amyloid-forming proteins are well studied, the early stages of amyloidosis are still not well understood on a molecular level. Covalent labeling, combined with mass spectrometry (CL-MS), is uniquely well suited to provide molecular-level insight into the factors governing the early stages of amyloidosis. This dissertation leverages CL-MS techniques to examine the early stages of β-2-microglobulin (β2m) amyloidosis. β2m is the protein that forms amyloids in the condition known as dialysis-related amyloidosis. An automated CL-MS technique that uses dimethyl(2-hydroxy-5-nitrobenzyl) sulfonium bromide as a labeling reagent was developed and used …


Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez Sep 2021

Behavioral Modulation Of Supramolecular Assemblies Via Covalent And Non-Covalent Interfacial Transformations, Ann Fernandez

Doctoral Dissertations

There are several molecular level mechanisms at the origin of biological functions that serve as inspiration for the development of the “next generation” of materials that display adaptive and interactive properties. However, it will take time for synthetic materials to approach the level of complexity, robustness, and adaptability of biological systems. Although there are switchable platforms that respond via sensitized molecular components, there are currently no examples of materials that truly possess the type of autonomous behavior seen in biological systems. Even though these concepts are common in living organisms, their translation into a synthetic platform remains challenging to this …


Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah Sep 2021

Manipulating The Aliovalent Magnetic Dopants In Ti(Iv)-Based Oxide Nanocrystals, Muhammad Abdullah

Doctoral Dissertations

The intentional incorporation of impurities or dopants in semiconductors is fundamental to manipulate the properties that render them useful for spintronics, photocatalysis, and optoelectronics. One long-standing challenge in integrating the doped semiconductors in various applications is the design of materials with controlled individual dopant properties such as dopants speciation, valence state, and spin dynamics. Despite several elegant studies to circumvent these material challenges, the quest for new materials with tunable dopant properties to address the theoretical and experimental understanding continues. In this work, we combine synthetic chemistry and various spectroscopies to study a class of materials possessing both substitutional magnetic …


Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha Sep 2021

Design Of Resposive Oligomeric And Polymeric Interfaces For Sensing And Controlled Release Applications, . Manisha

Doctoral Dissertations

Nature has designed magnificent responsive systems by constructing several interacting molecular level networks for the recognition and propagation of chemical and biochemical information. One of the eminent characteristics of these systems is their capability to quickly transduce molecular scale recognition events into macroscopic or visually observable responses. Inspired by these systems present in nature, we became interested in developing artificial responsive systems with similar capabilities. This dissertation will feature four such systems that employ amphiphilic oligomers and polymers which were chosen as the scaffolds because of their high thermodynamic stability, low critical aggregation concentrations, convenient handles to incorporate functional group …


Using Applied Field, Pressure, And Light To Control Magnetic States Of Materials, Amanda J. Clune Aug 2021

Using Applied Field, Pressure, And Light To Control Magnetic States Of Materials, Amanda J. Clune

Doctoral Dissertations

Due to their low energy scales, flexible architectures, and unique exchange pathways, molecule-based multiferroics host a number of unique properties and phase transitions under external stimuli. In this dissertation, we reveal the magnetic- and pressure-driven transitions in [(CH3)2NH2]Mn(HCOO)3 and (NH4)2[FeCl5(H2O)], present a detailed investigation of these materials away from standard equilibrium phases, and develop rich two- and three-dimensional phase diagrams.

The first platform for exploring phase transitions is [(CH3)2NH2]Mn(HCOO)3. This type-I multiferroic contains Mn centers linked by …


Development Of Catalysts For The Ring-Opening Polymerization Of Cyclic Esters And The Coordination-Insertion Polymerization Of Olefins, Alicia Doerr Aug 2021

Development Of Catalysts For The Ring-Opening Polymerization Of Cyclic Esters And The Coordination-Insertion Polymerization Of Olefins, Alicia Doerr

Doctoral Dissertations

Over the past few decades, interest in the design and synthesis of tailorable polymeric materials has grown due to the well documented correlation between structure, property, and function. However, in order to obtain polymers with desired microstructures, well controlled synthetic methods are needed. Therefore, the continued investigation of homogeneous, single-site polymerization catalysts is important to gain a deeper understanding of how systematic modifications of polymerization conditions, ligand scaffold, metal center identity, cocatalyst or activator identity, etc. affect the catalytic activity, selectivity, and/or polymer topology obtained when using these catalysts for the polymerization of a variety of monomers. This dissertation will …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Stimuli-Responsive Polyelectrolytes: Thermosensitive Zwitterionic Polymers And Charged Shape-Changing Star Molecular Bottlebrushes, Evan M. Lewoczko Aug 2021

Stimuli-Responsive Polyelectrolytes: Thermosensitive Zwitterionic Polymers And Charged Shape-Changing Star Molecular Bottlebrushes, Evan M. Lewoczko

Doctoral Dissertations

This dissertation work investigated two classes of stimuli-responsive polyelectrolytes: thermosensitive zwitterionic poly(sulfobetaine methacrylate)s (PSBMAs) and charged shape-changing star molecular bottlebrushes (SMBs). While zwitterionic polymers are explored for numerous applications, their structure-solution behavior relationship was poorly understood. The first part of this dissertation focused on the effects of N-substituents of PSBMAs on their behavior in water. A series of PSBMAs were synthesized, with systematically changed N-substituents, including symmetric N-n-alkyl substituents of various lengths and asymmetric N-substituents comprising one methyl and either one cyclohexyl, phenyl or 2-hydroxyethyl group. The behavior of PSBMAs with symmetric N-substituents …


Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer Aug 2021

Fabrication Of Specialized Scintillators For Nuclear Security Applications, Cordell James Delzer

Doctoral Dissertations

Radiation detectors are important for a variety of fields including medical imaging, oil drilling, and nuclear security. Within nuclear security, they can serve a multitude of purposes whether that be imaging, localization, isotopic identification, or even just activity measurement. Even without directly seeing a nuclear material it is often able to notice their existence without a detector. Scintillators make up an important part of these detectors due to their large intrinsic efficiency, low cost, large volume, and relatively low upkeep. Due to the importance of the large number of purposes these scintillators may be used for, it can often be …


Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong Aug 2021

Development Of Density-Functional Tight-Binding Methods For Chemical Energy Science, Quan Vuong

Doctoral Dissertations

Density-functional tight-binding (DFTB) method is an approximation to the popular first-principles density functional theory (DFT) method. Recently, DFTB has gained considerable visibility due to its inexpensive computational requirements that confer it the capability of sustaining long-timescale reactive molecular dynamics (MD) simulations while providing an explicit description of electronic structure at all time steps. This capability allows the description of bond formation and breaking processes, as well as charge polarization and charge transfer phenomena, with accuracy and transferability beyond comparable classical reactive force fields. It has thus been employed successfully in the simulation of many complex chemical processes. However, its applications …


Physical Adsorption Of Linear Hydrocarbon Quadrupoles On Graphite And Mgo (100): Effects Of The Compatibility Of Surface And Molecular Symmetries, Andrew J. Pedersen Aug 2021

Physical Adsorption Of Linear Hydrocarbon Quadrupoles On Graphite And Mgo (100): Effects Of The Compatibility Of Surface And Molecular Symmetries, Andrew J. Pedersen

Doctoral Dissertations

The process of physical adsorption finds a practical role in wide-ranging fields from catalysis, to lubrication, and even optoelectronics. Furthermore, it provides a mechanism to probe the fundamental understanding of intermolecular forces and how symmetries can play a role in the behavior of a system. Linear quadrupoles preferentially adopt square-T configurations when confined in two dimensions. This would lead the system to adopt a four-fold symmetry in the molecular lattice.

Two archetypal surfaces often studied in physisorption research are MgO (100), which has a four-fold symmetry of alternating charges, and the basal plane of graphite, which has a six-fold symmetry …


Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu Jul 2021

Designing Stimuli-Responsive Nanocomposites To Investigate Interface Dynamics, Huyen Vu

Doctoral Dissertations

Inspired by nature, this research focuses on designing multifunctional renewable nanocomposites with high toughness and stimuli-responsiveness. In recent years, cellulose nanocrystals (CNCs) have been explored due to their abundance, renewable resource, and unique mechanical strength and structural coloration. CNCs naturally self-assemble into the helicoidal (Bouligand) structure that effectively endure high impacts but is brittle without an attendant soft phase. A thermoresponsive polymer, poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), was incorporated into CNCs via evaporation-induced self-assembly to improve toughness of the resulting nanocomposites and to study responses in polymer dynamics under varying temperature and humidity conditions. To study microscopic …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …


Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango Jun 2021

Enhancing The Intracellular Availability Of Protein Cargoes In Polymer-Mediated Delivery, Christopher R. Hango

Doctoral Dissertations

Protein drugs, including antibodies, are rapidly emerging as the top-selling pharmaceuticals worldwide owing to their unparalleled specificity and biocompatibility. However, none of the currently-approved protein therapeutics act intracellularly, despite the vast majority of potential drug targets residing within the cell. This is due mainly to the paramount challenge of transporting hydrophilic macromolecular cargoes across the plasma membrane. As such, effective protein carriers are essential for the advancement of modern medicine. Despite significant advances, many challenges still plague protein delivery. Following membrane transduction, delivery vectors must preserve the structure and activity of their cargoes while transporting them to the correct subcellular …


Investigative Mechanisms To Exploit Caspase-Induced Apoptosis Using Polymeric Nanogels, Francesca Edith Anson May 2021

Investigative Mechanisms To Exploit Caspase-Induced Apoptosis Using Polymeric Nanogels, Francesca Edith Anson

Doctoral Dissertations

Cysteine aspartate proteases (caspases) act as the molecular scissors of cell death, disintegrating diverse cellular components necessary for survival and growth via proteolysis. Caspases are tightly regulated through a myriad of mechanisms including proteolytic processing, structural changes, post-translational modifications and metal binding. Correspondingly, cancers have evolved numerous resistance and desensitization mechanisms upstream or within the caspase pathway to avoid death signals. These mechanisms are extremely diverse and are not fully understood however, the field overwhelming suggests caspase activity and caspase inhibition antagonism to be critical for efficacious cancer therapies. Accordingly, exploiting the role of caspases in apoptosis has become an …


Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland May 2021

Small Molecule Activation By Transition Metal Complexes: Studies With Quantum Mechanical And Machine Learning Methodologies, Justin Kyle Kirkland

Doctoral Dissertations

One of the largest areas of study in the fields of chemistry and engineering is that of activation of small molecules such as nitrogen, oxygen and methane. Herein we study the activation of such molecules by transition metal compounds using quantum mechanical methods in order to understand the complex chemistry behind these processes. By understanding these processes, we can design and propose novel catalytic species, and through the use of data-driven machine learning methods, we are able to accelerate materials discovery.


Fine Tuning Rhii Complexes With Tethered, Axial Coordination: Structural Studies And Application To Diazo-Mediated Cyclopropanation Reactions, Derek Cressy May 2021

Fine Tuning Rhii Complexes With Tethered, Axial Coordination: Structural Studies And Application To Diazo-Mediated Cyclopropanation Reactions, Derek Cressy

Doctoral Dissertations

The cyclopropane moiety is an attractive synthetic target due to its application in pharmaceuticals and medicinal research. One effective strategy involves the formation of metal carbenoid species from diazo reagents. The carbenoid then reacts with an olefin substrate to generate the cyclopropane ring. Of the metal complexes that can facilitate this reaction, dirhodium(II) paddlewheel complexes are arguably the most prevalent catalysts. This is because modification of the bridging ligands enables control to be exerted over the catalyst’s chemoselectivity and enantioselectivity. Exploiting the axial site as a control element is often overlooked as strongly coordinated Lewis bases inhibit catalysis. Despite this, …


Spectroscopic Investigations Of Complex Van Der Waals Systems, Sabine N. Neal May 2021

Spectroscopic Investigations Of Complex Van Der Waals Systems, Sabine N. Neal

Doctoral Dissertations

Complex chalcogenides are superb platforms for revealing the interplay between structure, charge, and magnetism as well as the unusual states of matter that develop under external stimuli. These van der Waals solids can also be exfoliated into few- and single-layer sheets that sport a number of unexpected properties, including quantum confinement, magnetic excitations and size-induced magnetic states, and symmetry breaking. A commonality amongst sheet studies is the role of Raman scattering to assure sample quality, probe even-symmetry vibrational modes, and uncover single-layer properties. Odd-symmetry modes were, however, completely underexplored in few-layer materials. Infrared spectroscopy is well suited for examining the …


Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury May 2021

Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury

Doctoral Dissertations

Understanding the effect of the functional groups at the terminus of the side chains is important for developing conjugated polymers through side chain engineering. Nucleobases, which are known for their multi-functionality, have not been deeply studied as functionality in conjugated polymers due to synthetic challenges. The overarching goal of my dissertation is to design, synthesize, characterize conjugated polymers bearing nucleobase functionality in their side chains and demonstrate their utility in various applications. Stille cross-coupling and direct arylation polymerization are used to synthesize adenine- and thymine-containing conjugated polymers. Monomer design requirements for successful polymerization are studied and conditions that optimize polymerization …