Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Virginia Commonwealth University

2021

Discipline
Keyword
Publication
Publication Type
File Type

Articles 1 - 17 of 17

Full-Text Articles in Chemistry

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead Jan 2021

Fabrication Of Metal-Silicon Nanostructures By Reactive Laser Ablation In Liquid, Eric J. Broadhead

Theses and Dissertations

Metal-silicon nanostructures are a growing area of research due to their applications in multiple fields such as biosensing and catalysis. In addition, silicon can provide strong support effects to metal nanoparticles while being more cost effective than traditionally used supports, like titania. Traditional wet-chemical methods are capable of synthesizing metal-silicon nanostructures with a variety of composition and nanoparticle shapes, but they often require high temperatures, toxic solvents, strong reducing agents, or need capping agents added to stabilize the nanoparticles. Laser processing is an emerging technique capable of synthesizing metal-silicon composite surfaces that offers a faster, simpler, and greener synthesis route …


Reversible Electrowetting Transitions On Superhydrophobic Surfaces, D. Vanzo, A. Luzar, D. Bratko Jan 2021

Reversible Electrowetting Transitions On Superhydrophobic Surfaces, D. Vanzo, A. Luzar, D. Bratko

Chemistry Publications

Electric field applied across the interface has been shown to enable transitions from Cassie to Wenzel state on superhydrophobic surfaces with miniature corrugations. Molecular Dynamics (MD) simulations manifest the possibility of reversible cycling between the two states when narrow surface wells support spontaneous expulsion of water in the absence of the field. With approximately 1 nm sized wells between the surface asperities, response times to changes of electric field are of O(0.1) ns, allowing up to GHz frequency of the cycle. Because of orientation preferences of interfacial water in contact with the solid, the phenomenon depends on the polarity of …


Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega Jan 2021

Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega

Theses and Dissertations

Trinitrotoluene (TNT) is an explosive commonly used during military and terrorist activities. Current methods to identify this compound require sampling, transport and analysis at a forensic lab using analytical instrumentation. However, on-site detection is needed to assist efforts to prevent detonation. Gold nanoparticles have been used as sensors throughout the years due to their versatility and surface enhanced Raman scattering properties in the presence of an analyte and low limits of detection. By taking advantage of the Meisenheimer complex that TNT forms in the presence of amines, it is possible to determine its presence at picogram levels. Subsequently, adhering amine …


Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher Jan 2021

Transcriptional Repressor Protein Based Macrolide Biosensor Development With Improved Sensitivity, Jayani A. Christopher

Graduate Research Posters

Macrolide antibiotics are in high demand for clinical applications. Macrolides are biosynthesized via giant assembly line polyketide synthases (PKS) which are arranged in a modular fashion. Combinatorial biosynthetic methods have been used to produce diversified macrolides by reprograming these modules and modifying tailoring enzymes required for post synthetic modifications. However it is challenging due to the size and complexity of PKSs. To overcome this challenge, new enzymes for macrolide diversification could be obtained by directed evolution where a large number of enzyme variants need to be screened. Therefore it is important to develop high throughput screening methods to identify the …


Collisions Or Adsorption: An Electrochemical Random Walk Decides, Junaid U. Ahmed, Julio C. Alvarez Jan 2021

Collisions Or Adsorption: An Electrochemical Random Walk Decides, Junaid U. Ahmed, Julio C. Alvarez

Graduate Research Posters

Current-time recordings of toluene microdroplets emulsified in water and containing 20 mM Ferrocene (Fc), show multiple electrochemical peaks from oxidation of Fc on disk microelectrodes (5μm-diameter). The average droplet diameter (~0.7 μm) determined from area integration of the peaks was close to Dynamic Light Scattering measurements (~1 μm). Random walk simulations were performed deriving equations to simulate droplet electrolysis using the diffusion and thermal velocity expressions established by Einstein. The simulations show that multiple droplet-electrode collisions, lasting ~0.11 μs each, occur before a droplet wanders away. Updating the Fc-concentration at every collision shows that a droplet only oxidizes ~0.58 % …


Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus Jan 2021

Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus

Graduate Research Posters

According to the Centers of Disease Control and Prevention, antibiotics decrease in effectiveness as bacteria gain resistance for previously treatable illnesses. Currently, antibiotic susceptibility is typically carried out via the Kirby-Bauer method. Even with automation, this process requires two incubation periods so a less time-consuming technique is desirable. Single entity electrochemistry (SEE) detects changes in current when collisions of individual particles at an ultramicroelectrode (UME) are linked with an electrochemical event. Our group has obtained step-like and spike-like responses of Saccharomyces cerevisiae at the UME surface as a result of adsorption and desorption, respectively. This response is due to the …


Extending Single Entity Electrochemistry Towards The Detection Of Single Bacteria In Micro Volumes, Ashley Tubbs, Junaid Ahmed, Julio C. Alvarez Jan 2021

Extending Single Entity Electrochemistry Towards The Detection Of Single Bacteria In Micro Volumes, Ashley Tubbs, Junaid Ahmed, Julio C. Alvarez

Graduate Research Posters

Single entity electrochemistry (SEE) is an emerging electroanalytical technique with the ability to push the limit of detection of electrochemical sensors to the single particle level. It measures the change in current over time, making SEE rapid, simple, and cost-effective. The type of current response observed in the scan can provide information about the physiochemical processes underlying the signal. While SEE was originally developed to detect single molecules and nanoparticles, it has been widely applied to micron-sized particles, including emulsion droplets, bacteria, viruses, and mammalian cells. Some recent advances in this technique have focused on the detection of microscopic quantities …


Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega Jan 2021

Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega

Master of Science in Forensic Science Directed Research Projects

Trinitrotoluene (TNT) is an explosive commonly used during military and terrorist activities. Current methods to identify this compound require sampling, transport and analysis at a forensic lab using analytical instrumentation. However, on-site detection is needed to assist efforts to prevent detonation. Gold nanoparticles have been used as sensors throughout the years due to their versatility and surface enhanced Raman scattering properties in the presence of an analyte and low limits of detection. By taking advantage of the Meisenheimer complex that TNT forms in the presence of amines, it is possible to determine its presence at picogram levels. Subsequently, adhering amine …


Characterizing The Presence Of Edta In Blood Samples, Alexandra Wright Jan 2021

Characterizing The Presence Of Edta In Blood Samples, Alexandra Wright

Master of Science in Forensic Science Directed Research Projects

Blood is often a type of evidence found at crime scenes. There has been a long history of criminal cases involving blood evidence samples that were allegedly planted at the scene by a third party. Ethylenediaminetetraacetic acid, or EDTA, is an anticoagulant that is not naturally occurring in blood samples; it chelates to ions in blood to prevent clotting. If present in a blood evidence sample, it could be indicative that the blood sample may have been planted at the crime scene to implicate a suspect. EDTA is also reported to modify clothing and exist in detergents, to allow dyes …


Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522 Jan 2021

Ligand Effects On Electronic, Magnetic, And Catalytic Properties Of Clusters And Cluster Assemblies, Dinesh Bista 9288522

Theses and Dissertations

Ligands commonly protect metallic clusters against reacting with outside reactants. However, ligands can also be used to control the redox properties enabling the formation of super donors/acceptors that can donate/accept multiple electrons. This thesis focuses on how the ligands can be used to control the electronic and magnetic features of clusters and ligand stabilized cluster-based assemblies, leading to nano pn junctions with directed transport, the possibility of light-harvesting, and catalysts for cross-coupling reactions. The thesis addresses three distinct classes of clusters and their applications. The first class of cluster “metal chalcogen clusters” is the central idea of the thesis focused …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Computational Study Of Radical Cation Rearrangements, Mi'kayla D. Word Jan 2021

Computational Study Of Radical Cation Rearrangements, Mi'kayla D. Word

Theses and Dissertations

A radical cation is a molecule that has one unpaired electron that holds a positive charge. The unpaired electron within a radical cation causes the molecule to be reactive. The high reactivity of these species allows for radical cations to be commonly studied experimentally using mass spectrometry and other multi-mass imaging techniques. However, these methods often cannot resolve the reaction mechanisms for these fast reactions. Specifically, radical cation rearrangement mechanisms are particularly unresolved within experiments. For this reason, radical cation rearrangements are computationally investigated to explain complex reaction pathways for processes to understand reactions leading to the initiation of detonation …


The Rational Synthesis Of Lanthanum Manganite Nanomaterials For Magnetic Refrigeration Applications, Caitlin Hunt Jan 2021

The Rational Synthesis Of Lanthanum Manganite Nanomaterials For Magnetic Refrigeration Applications, Caitlin Hunt

Theses and Dissertations

Refrigeration systems for the cooling of commercial and residential buildings are a major drain on energy resources and source of greenhouse gas emissions. Magnetic refrigeration, which employs the magnetocaloric effect, has the potential to mitigate the energy drain and greenhouse gas emissions for air conditioning. In order to commercialize magnetic refrigerators, a material with a high magnetic entropy change, ΔS, near room temperature which is simple and inexpensive to create is needed.1 Current options for this solid refrigerant are either expensive, difficult to synthesize, or have a ΔS or Tc (the Curie Temperature, where ΔS is maximized) below …


Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon Jan 2021

Information Architecture For A Chemical Modeling Knowledge Graph, Adam R. Luxon

Theses and Dissertations

Machine learning models for chemical property predictions are high dimension design challenges spanning multiple disciplines. Free and open-source software libraries have streamlined the model implementation process, but the design complexity remains. In order better navigate and understand the machine learning design space, model information needs to be organized and contextualized. In this work, instances of chemical property models and their associated parameters were stored in a Neo4j property graph database. Machine learning model instances were created with permutations of dataset, learning algorithm, molecular featurization, data scaling, data splitting, hyperparameters, and hyperparameter optimization techniques. The resulting graph contains over 83,000 nodes …


Bisphosohoglycertae Mutase: A Potential Target For Sickle Cell Disease, Anfal S. Aljahdali Jan 2021

Bisphosohoglycertae Mutase: A Potential Target For Sickle Cell Disease, Anfal S. Aljahdali

Theses and Dissertations

Bisphosphoglycerate mutase (BPGM) is a part of the erythrocyte glycolysis system. Specifically, it is a central enzyme in the Rapoport-Leubering pathway, a side glycolytic pathway involved in the regulation of the concentration of the natural allosteric effector of hemoglobin (Hb), 2,3-bisphosphoglycerate (2,3-BPG). BPGM catalyses the synthesis and hydrolysis of 2,3-BPG through its synthase and phosphatase activities. The synthase activity is the main role of BPGM, while the phosphatase activity is low and is activated by the physiological effector, 2-phosphoglycolate (2-PG) with the latter mechanism poorly understood.

BPGM activity and 2,3-BPG levels in red blood cells (RBCs) have a significant role …


Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs Jan 2021

Single Molecule Investigations Of Holliday Junction Binding Protein Ruva, Dalton Reed Gibbs

Theses and Dissertations

DNA breaks are inevitable as they mainly occur due to cells’ own reactive oxygen species (ROS). While DNA breaks can be single-stranded or double-stranded, the double-stranded DNA (dsDNA) breaks are more dangerous. If such damage is not repaired, it can lead to genetic instability and serious health issues including cancers. One way dsDNA breaks can be repaired is via a process called homologous recombination (HR), which involves several DNA-binding proteins. Therefore, to have a better insight into the repair mechanism and origin of repair defects, we need a better understanding of how these proteins interact with DNA itself and DNA …


Identification Of Compounds Causing Cellular Autofluorescence In Touch Samples, Elora C. Wall Jan 2021

Identification Of Compounds Causing Cellular Autofluorescence In Touch Samples, Elora C. Wall

Master of Science in Forensic Science Directed Research Projects

As DNA analysis has advanced and produced tests with higher sensitivities, attention has turned toward obtaining DNA profiles from cells left with fingermarks. Recent studies have reported that cells deposited within fingermarks can exhibit differences in autofluorescence emission in the ‘red’ region of the visible spectrum (e.g., between 650-670 nm), which can be used to differentiate contributor cell population and separate them before DNA profiles. Interestingly, this emission was not consistent to the individual day-to-day and likely not a genetically-controlled attribute of the contributor. Instead, this emission signature results from extended exposure of the skin to certain materials such as …