Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Chemistry

Designed Guanidinium-Rich Amphipathic Oligocarbonate Molecular Transporters Complex, Deliver And Release Sirna In Cells, E. I. Geihe, Christina B. Cooley, J. R. Simon, M. K. Kiesewetter, J. A. Edward, R. P. Hickerson, R. L. Kaspar, J. L. Hedrick, R. M. Waymouth, P. A. Wender Jun 2019

Designed Guanidinium-Rich Amphipathic Oligocarbonate Molecular Transporters Complex, Deliver And Release Sirna In Cells, E. I. Geihe, Christina B. Cooley, J. R. Simon, M. K. Kiesewetter, J. A. Edward, R. P. Hickerson, R. L. Kaspar, J. L. Hedrick, R. M. Waymouth, P. A. Wender

Christina B Cooley

The polyanionic nature of oligonucleotides and their enzymatic degradation present challenges for the use of siRNA in research and therapy; among the most notable of these is clinically relevant delivery into cells. To address this problem, we designed and synthesized the first members of a new class of guanidinium-rich amphipathic oligocarbonates that noncovalently complex, deliver, and release siRNA in cells, resulting in robust knockdown of target protein synthesis in vitro as determined using a dual-reporter system. The organocatalytic oligomerization used to synthesize these co-oligomers is step-economical and broadly tunable, affording an exceptionally quick strategy to explore chemical space for optimal …


Investigating The Pharmacokinetics And Biological Distribution Of Silver-Loaded Polyphosphoester-Based Nanoparticles Using 111ag As A Radiotracer, Tolulope Aweda, Shiyi Zhang, Chiedza Mupanomunda, Jennifer Burkemper, Gyu Heo, Nilantha Bandara, Mai Lin, Cathy Cutler, Carolyn Cannon, Wiley Youngs, Karen Wooley, Suzanne Lapi Sep 2015

Investigating The Pharmacokinetics And Biological Distribution Of Silver-Loaded Polyphosphoester-Based Nanoparticles Using 111ag As A Radiotracer, Tolulope Aweda, Shiyi Zhang, Chiedza Mupanomunda, Jennifer Burkemper, Gyu Heo, Nilantha Bandara, Mai Lin, Cathy Cutler, Carolyn Cannon, Wiley Youngs, Karen Wooley, Suzanne Lapi

Wiley J. Youngs

Purified 111Ag was used as a radiotracer to investigate silver loading and release, pharmacokinetics, and biodistribution of polyphosphoester-based degradable shell crosslinked knedel-like (SCK) nanoparticles as a comparison to the previously reported small molecule, N-heterocyclic silver carbene complex analog (SCC1) for the delivery of therapeutic silver ions in mouse models. Biodistribution studies were conducted by aerosol administration of 111Ag acetate, [111Ag]SCC1, and [111Ag]SCK doses directly into the lungs of C57BL/6 mice. Nebulization of the 111Ag antimicrobials resulted in an average uptake of 1.07 ± 0.12% of the total aerosolized dose given per mouse. The average dose taken into the lungs of …


Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya Jan 2015

Real-Time Mri-Guided Catheter Tracking Using Hyperpolarized Silicon Particles, Nicholas Whiting, Jingzhe Hu, Jay V. Shah, Maja C. Cassidy, Erik Cressman, Niki Zacharias Millward, David G. Menter, Charles M. Marcus, Pratip K. Bhattacharya

Nicholas Whiting

Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ≥40 minutes—allowing imaging experiments over extended time durations. The …


Magnetic Properties Of (Γ-Fe₂O₃)₈₀Ag₂₀ Nanocomposites Prepared In Reverse Micelles, Joan A. Wiemann, Jianbiao Dai, Jinke Tang, Gary J. Long, Leonard Spinu Oct 2014

Magnetic Properties Of (Γ-Fe₂O₃)₈₀Ag₂₀ Nanocomposites Prepared In Reverse Micelles, Joan A. Wiemann, Jianbiao Dai, Jinke Tang, Gary J. Long, Leonard Spinu

Jinke Tang

The magnetic properties of nanoparticles of gamma-Fe2O3 prepared by reverse micelles have been studied by dc magnetization, transverse ac susceptibility, and Mössbauer spectroscopy. The nanoparticles of gamma-Fe2O3 in the nanocomposite (gamma-Fe2O3)80Ag20 exhibit superparamagnetic behavior. The blocking temperatures determined by the three methods indicate the superparamagnetic nature of (gamma-Fe2O3)80Ag20 above 70-80 K and show correlation with measuring time. The average particle diameter obtained by transmission electron microscopy of the gamma-Fe2O3 particles is ~10 nm and that of the Ag particles is ~20 nm. The average particle size determined from the magnetic analyses for the gamma-Fe2O3 particles is ~12 nm. Mössbauer spectra …


Tuning Supported Catalyst Reactivity With Dendrimer-Templated Pt-Cu Nanoparticles, Natalie N. Hoover, Bethany J. Auten, Bert D. Chandler Sep 2013

Tuning Supported Catalyst Reactivity With Dendrimer-Templated Pt-Cu Nanoparticles, Natalie N. Hoover, Bethany J. Auten, Bert D. Chandler

Bert D Chandler

The effects of particle composition on heterogeneous catalysis were studied using dendrimer-encapsulated nanoparticles (DENs) as precursors to supported Pt-Cu catalysts. Bimetallic Pt-Cu DENs with varying Pt/Cu ratios were prepared in an anaerobic aqueous solution and deposited onto a high-purity commercial alumina support. The dendrimer template was then thermally removed to yield supported nanoparticle catalysts, which were studied with toluene hydrogenation and CO oxidation catalysis as well as infrared spectroscopy of adsorbed CO. Incorporating Cu into Pt nanoparticles had opposite effects on the two test reactions. Cu acted as a mild promoter for CO oxidation catalysis, and the promoting effect was …


Hyaluronic Acid Based Self-Assembling Nanosystems For Cd44 Target Mediated Sirna Delivery To Solid Tumors., Arun Iyer Dec 2012

Hyaluronic Acid Based Self-Assembling Nanosystems For Cd44 Target Mediated Sirna Delivery To Solid Tumors., Arun Iyer

Arun Iyer

Anticancer therapeutics employing RNA interference mechanism holds promising potentials for sequence-specific silencing of target genes. However targeted delivery of siRNAs to tumor tissues and cells and more importantly, their intracellular release at sites of interest still remains a major challenge that needs to be addressed before this technique could become a clinically viable option. In the current study, we have engineered and screened a series of CD44 targeting hyaluronic acid (HA) based self-assembling nanosystems for targeted siRNA delivery. The HA polymer was functionalized with lipids of varying carbon chain lengths/nitrogen content, as well as polyamines for assessing siRNA encapsulation. From …


Fluorescence-Guided Optical Coherence Tomography Imaging For Colon Cancer Screening: A Preliminary Mouse Study., Arun K. Iyer Dec 2011

Fluorescence-Guided Optical Coherence Tomography Imaging For Colon Cancer Screening: A Preliminary Mouse Study., Arun K. Iyer

Arun Iyer

A new concept for cancer screening has been preliminarily investigated. A cancer targeting agent loaded with a near-infrared (NIR) dye was topically applied on the tissue to highlight cancer-suspect locations and guide optical coherence tomography (OCT) imaging, which was used to further investigate tissue morphology at the micron scale. A pilot study on ApcMin mice has been performed to preliminarily test this new cancer screening approach. As a cancer-targeting agent, poly(epsilon-caprolactone) microparticles (PCLMPs), labeled with a NIR dye and functionalized with an RGD (argenine-glycine-aspartic acid) peptide, were used. This agent recognizes the α(ν)β(3) integrin receptor (ABIR), which is over-expressed by …


High-Loading Nanosized Micelles Of Copoly(Styrene-Maleic Acid)-Zinc Protoporphyrin For Targeted Delivery Of A Potent Heme Oxygenase Inhibitor., Arun Iyer Mar 2007

High-Loading Nanosized Micelles Of Copoly(Styrene-Maleic Acid)-Zinc Protoporphyrin For Targeted Delivery Of A Potent Heme Oxygenase Inhibitor., Arun Iyer

Arun Iyer

Amphiphilic styrene-maleic acid (SMA) copolymer efficiently formed micelles with a potent heme oxygenase inhibitor-zinc protoporphyrin (ZnPP). The micelles were constructed by subtle pH adjustments to form non-covalent interaction between the hydrophobic ZnPP and amphiphilic SMA. The micelles (SMA-ZnPP) thus formed were nanoparticles with narrow size distribution in water (mean diameter 176.5nm), having tunable loading (from 15% to 60% w/w of ZnPP) with remarkable aqueous solubility. SMA-ZnPP had an average molecular size of 144kDa as determined by size-exclusion chromatography (SEC), this size is a marked increase from the molecular weight of free ZnPP (626.03Da), suggesting the formation of micellar structure. The …