Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

2021

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 211

Full-Text Articles in Chemistry

Characterization Of The Ch Addition Product From Meta- And Ortho-Xylene + Ch Reaction And Direct Experimental Observation Of The Tetrabromine Cluster Br4 Using Synchrotron Photoionization Mass Spectrometry, Rory R. Mcclish Dec 2021

Characterization Of The Ch Addition Product From Meta- And Ortho-Xylene + Ch Reaction And Direct Experimental Observation Of The Tetrabromine Cluster Br4 Using Synchrotron Photoionization Mass Spectrometry, Rory R. Mcclish

Master's Theses

This thesis is centered on the use of a unique gas-phase spectroscopy technique to characterize products and elucidate reaction mechanisms. Experiments were carried out at the Chemical Dynamics Beamline 9.0.2 of the Advanced Light Source located at the Lawrence Berkeley National Laboratory in Berkeley, CA. Computational work was performed on the scientific supercomputer at USF to supplement experimental findings. Chapter 1 contextualizes the work spurred in response to the deleterious interactions of anthropogenic emissions on Earth’s climate. Chapter 2 describes the theoretical manipulations foundational to the experimental design and interpretation. Chapter 3 delves into the physical details of the experimental …


The Inhibition Activity Of Tert-Butylhydroquinone Towards Corrosion Of Aluminum, Copper And Stainless Steel In Biodiesel Blend B20 Alternative Fuel, Chaza Joumaa, Ibtissam Saad, Ghassan Younes Dec 2021

The Inhibition Activity Of Tert-Butylhydroquinone Towards Corrosion Of Aluminum, Copper And Stainless Steel In Biodiesel Blend B20 Alternative Fuel, Chaza Joumaa, Ibtissam Saad, Ghassan Younes

BAU Journal - Science and Technology

Tert-butylhydroquinone (TBHQ) has been investigated as corrosion inhibitor for aluminum; copper and stainless steel in biodiesel blend B20 by using electrochemical impedance spectroscopy (EIS) method. The results showed that the inhibition efficiency increases with an increase in the concentration of TBHQ but decreases with increasing temperature from 30℃ to 60℃. A maximum inhibition efficiency of about 61.52% for aluminum was recorded for THBQ in biodiesel blend B20 at temperature 30℃ and at a concentration of 4x10-6 M which is the lowest concentration used compared to the concentrations of TBHQ used for the other metals (copper and stainless steel). Theoretical …


Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih Dec 2021

Self-Assembly Of Black Cumin Oil-Based Nanoemulsion On Various Surfactants: A Molecular Dynamics Study, Aulia Fikri Hidayat, Taufik Muhammad Fakih

Makara Journal of Science

Black cumin is commonly used as traditional medicine due to its wide range of pharmacological potential. Black cumin oil (BCO) was often prepared as nanoemulsion to improve its solubility, stability, and bioavailability. This study was conducted to investigate the molecular behavior as well as structural evolution of BCO-surfactant systems during self-assembly micellization using molecular dynamics (MD) simulations. Several BCO constituents and variations of surfactants were employed to model BCO-surfactant systems. 50 ns of MD simulations were performed to elucidate their evolution of structures and physicochemical properties during formation. Results showed that BCO-tween20 and BCO-lecithin were able to form spherical-shaped micelles …


Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li Dec 2021

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li

Journal of Electrochemistry

Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and …


Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma Dec 2021

Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma

Journal of Electrochemistry

The preparation of iron oxide films with nanoporous structure by anodization has attracted much attention for its potential applications. However, the formation mechanism of porous structure during anodization is still unclear. In this paper, the composition of anodic current during the formation of nanoporous anodized iron oxide film was analyzed in combination with the current density-potential response (I-V curve) and the derivation of Faraday’s law. The results showed that the anodic current consisted of an ionic current (leading to the migration of ions to form oxide) and an electronic current (leading to the oxygen evolution), and the …


Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun Dec 2021

Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun

Journal of Electrochemistry

Lithium-ion batteries (LIBs) are among the most widely used energy storage devices. Whole-cell modeling and simulations of LIBs can optimize the design of batteries with lower costs and higher speeds. The Pseudo-Two-Dimensional (P2D) electrochemical model is among the most famous whole-cell models and widely applied in LIB simulations. P2D model consists of a series of kinetic equations to model Li+/Li diffusion in working/counter electrodes and electrolytes, which are filled in the porous electrodes and separator, and reactions at the interface of electrolyte and active particles. The traditional applications of P2D model, however, are limited to the cases where the current …


Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin Dec 2021

Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin

Journal of Electrochemistry

The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively …


Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang Dec 2021

Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang

Journal of Electrochemistry

Aqueous sodium-ion batteries show promising application in fields of large-scale storage of intermittent renewable energies owing to the earth-abundant sodium resources and incombustible aqueous electrolytes. Primary factors determining whether they can be commercially utilized are low cost and long lifetime. Among current electrode materials, NASICON-type NaTi2(PO4)3 arouses wide interests as an anode material for aqueous sodium-ion batteries as it offers a high specific capacity, fast Na-transport ability and reasonable working potential, however, suffering from insufficient cycling performance caused by severe dissolution of active materials in traditional aqueous electrolytes. In this work, a functional sulfate electrolyte …


Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao Dec 2021

Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao

Journal of Electrochemistry

Chromium oxide (Cr8O21) cathode material for lithium batteries was synthesized by thermal decomposition of chromium trioxide (CrO3) at high temperature. The electrochemical properties of chromium oxide depended on the time and temperature during the heat treatment. Pure phase chromium oxide was prepared, and the effects of heat treatment time on the structures and electrochemical properties of Cr8O21 were systematically studied. The first discharge mechanism of chromium oxide in lithium batteries was explored, and the results were similar to that in lithium-sulfur batteries. The crystal phases and electrochemical properties of the prepared …


Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan Dec 2021

Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan

Journal of Electrochemistry

As the heat conduction medium of fuel cell cooling system, coolant is very important for the thermal management of fuel cell stack. In practical application, coolant leakage into the stack often occurs. Due to the randomness of fault location of components, the location of coolant leakage is uncertain, which may occur on the cathode side or anode side of some or all single cells. The main effects of coolant pollution on fuel cell stack are as follows: the output of open circuit voltage decreases sharply, the consistency of single cells voltage decreases and so on, which seriously affects the normal …


Study On The Uniformity Of Microgrooves In Through-Mask Electrochemical Micromachining With Moving Cathode, Li-Qun Du, Yi-Kui Wen, Fa-Long Guan, Ke Zhai, Zuo-Yan Ye, Chao Wang Dec 2021

Study On The Uniformity Of Microgrooves In Through-Mask Electrochemical Micromachining With Moving Cathode, Li-Qun Du, Yi-Kui Wen, Fa-Long Guan, Ke Zhai, Zuo-Yan Ye, Chao Wang

Journal of Electrochemistry

As a typical surface texture, microgrooves have broad prospects in the fields of mechanical engineering, bio-medicine, new energy and efficient heat dissipation of electronic products. Through-mask electrochemical micromachining (TMEMM) is widely used in the fabrication of micro-structures because of high processing efficiency and no residual stress. However, due to the edge effect of current distribution, there is often a serious dimension discrepancy problem in electrochemical machining of micro-structures. In order to weaken the influence of edge effect on the uniformity of microgrooves, the method that TMEMM with a moving cathode is presented. The current distribution in the electrochemical machining is …


Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang Dec 2021

Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang

Journal of Electrochemistry

In recent years, lithium-sulfur (Li-S) batteries have been considered as a promising candidate for the next generation of energy storage system due to their ultrahigh theoretical capacity (1675 mAh·g-1) and energy density (2600 Wh·kg-1). However, the practical application of Li-S batteries is seriously limited by their insulating nature of sulfur, the shuttle effect of polysulfides (LiPSs), and volume expansion during charging and discharging. To overcome those disadvantages, one of the commonly methods is to infiltrate sulfur into porous conductive carbon framework, such as porous carbon, hollow carbon spheres, graphene, carbon nanotubes and some composites of the above structures to achieve …


Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui Dec 2021

Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui

Journal of Electrochemistry

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan Dec 2021

A Nanoscale Shape-Discovery Framework Supporting Systematic Investigations Of Shape-Dependent Biological Effects And Immunomodulation, Wei Zhang, Hender Lopez, Luca Boselli, Paolo Bigini, André Perez-Potti, Zengchun Xie, Valentina Castagnola, Qi Cai, Camila P. Silveira, Joao M. De Araujo, Laura Talamini, Nicolò Panini, Giuseppe Ristagno, Martina B. Violatto, Stéphanie Devineau, Marco P. Monopoli, Mario Salmona, Valeria A. Giannone, Sandra Lara, Kenneth A. Dawson, Yan Yan

Articles

Since it is now possible to make, in a controlled fashion, an almost unlimited variety of nanostructure shapes, it is of increasing interest to understand the forms of biological control that nanoscale shape allows. However, a priori rational investigation of such a vast universe of shapes appears to present intractable fundamental and practical challenges. This has limited the useful systematic investigation of their biological interactions and the development of innovative nanoscale shape-dependent therapies. Here, we introduce a concept of biologically relevant inductive nanoscale shape discovery and evaluation that is ideally suited to, and will ultimately become, a vehicle for machine …


Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier Dec 2021

Splashing Of Large Helium Nanodroplets Upon Surface Collisions, Paul Martini, Simon Albertini, Felix Laimer, Miriam Meyer, Michael Gatchell, Olof E. Echt, Fabio Zappa, Paul Scheier

Faculty Publications

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of …


Functional Structure Of Biomacromolecules In Plant Biomass Using Solid-State Nmr And Dynamic Nuclear Polarization, Alex Kipchirchir Kirui Dec 2021

Functional Structure Of Biomacromolecules In Plant Biomass Using Solid-State Nmr And Dynamic Nuclear Polarization, Alex Kipchirchir Kirui

LSU Doctoral Dissertations

This dissertation summarizes the recent findings on complex biomacromolecules in cell wall of plants and fungi which perform important roles in cell recognition, structural build up, and energy storage. Because of the technical difficulty in characterizing these biomacromolecules, which are often polymorphic and disordered in structure, the functional structure of these biomacromolecules remains elusive. In this dissertation, I present two solid-state nuclear magnetic resonance (ssNMR) and dynamic nuclear polarization (DNP) studies of carbohydrate-rich biosystems: the energy-rich plant biomass and disease-relevant, pathogenic fungi.

First, we have investigated the secondary cell wall of plant biomass which is a carbohydrate-rich biosystem using solid …


The Effects Of Solution Ph, Temperature And Redox Environment On Corrosion And Oxide Formation On Inconel X-750, Mohsen Bahrami Dec 2021

The Effects Of Solution Ph, Temperature And Redox Environment On Corrosion And Oxide Formation On Inconel X-750, Mohsen Bahrami

Electronic Thesis and Dissertation Repository

Nickel-based superalloys have a wide range of applications in different industries due to their exceptional mechanical and corrosion-resistance properties. These alloys are widely employed in the nuclear industry. Inside a nuclear reactor, these alloys are exposed to a continuous flux of gamma-radiation. When exposed to gamma-radiation, water decomposes, resulting in the production of oxidizing and reducing species. These species have a considerable effect on the redox chemistry of the solution, which controls the overall corrosion behaviour of nickel-based superalloys.

Corrosion of metals and alloys involves several elementary steps. A comprehensive understanding of these steps and how they influence each other …


Electrodeless Electrochemistry Enabled By Nonthermal Plasma, Harold Oldham Dec 2021

Electrodeless Electrochemistry Enabled By Nonthermal Plasma, Harold Oldham

McKelvey School of Engineering Theses & Dissertations

The increasing availability and decreasing cost of electricity generated by renewable resources have motivated research into electrified chemical processing, whereby electrical energy is used to drive chemical transformations. Electricity-intensive processing techniques such as electrochemistry using solid electrodes has attracted attention in this context for the synthesis of organic compounds, such as high-value pharmaceuticals and renewable chemical production. Selective chemical transformations are achieved in conventional aqueous electrochemical systems by using external circuitry to bias solid electrodes, allowing for the preferential transfer of electrons between the electrode-liquid interface. Despite having the ability to promote controlled electrochemical reactions, configurations using solid electrodes are …


Seasonal Flammability Comparisons Of Native And Exotic Plants In The Post Oak Savannah, Blackland Prairie, And Pineywoods Ecoregions Of Texas, Michael Tiller Dec 2021

Seasonal Flammability Comparisons Of Native And Exotic Plants In The Post Oak Savannah, Blackland Prairie, And Pineywoods Ecoregions Of Texas, Michael Tiller

Electronic Theses and Dissertations

East Texas’ diverse landscape can present year-round wildfire seasons that can be influenced by seasonal and regional differences in climate and physiography. Greater insight into the fundamental thermal behavior of wildland fuels can aid in fire behavior prediction and development of fire-resistant plant lists. This study focused on estimating seasonal and regional flammability characteristics of five evergreen species: yaupon (Ilex vomitoria), Chinese privet (Ligustrum sinense), greenbrier (Smilax spp.), eastern red cedar (Juniperus virginiana), and escarpment live oak (Quercus fusiformis); and two deciduous species: Chinese tallow (Triadica sebifera) and southern …


Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon Dec 2021

Total Internal Reflection: Applications In Nonlinear Microscopy And Fluorescence Anisotropy, Brandon Colon

Doctoral Dissertations

As technology advances to harness new energies and to create new cures, the sophistication of analysis grows not only in depth but in efficiency. Total internal reflection (TIR) has been coupled to microscopy leveraging its unique optical phenomenon on a breadth of topics. In this dissertation, the work presented will show how TIR was applied in two different instrumental analyses to evaluate two unique and complex systems. The first project features TIR paired with the transient absorption microscopy (TAM), a nonlinear optical technique, to gauge solvent mixing and diffusion in microreactors. Microreactors gained acclaim for their ability to produce high …


Computational Analysis Of The Spin Trapping Properties Of Lipoic Acid And Dihydrolipoic Acid, Matthew Bonfield Dec 2021

Computational Analysis Of The Spin Trapping Properties Of Lipoic Acid And Dihydrolipoic Acid, Matthew Bonfield

Electronic Theses and Dissertations

While the spin trapping properties of thiols have been investigated through EPR analysis and kinetics studies, few groups have studied these properties using strictly computational methods. In particular, α-lipoic acid (ALA) and its reduced form, dihydrolipoic acid (DHLA), one of the strongest endogenously produced antioxidants, show potential for being effective, naturally occurring spin traps for the trapping of reactive oxygen species. This research covers electronic structure calculations of ALA, DHLA, and their corresponding hydroxyl radical spin adducts, performed at the cc-pVDZ/B3LYP/DFT level of theory. The effects on DHLA introduced by other radicals such as ·OOH, ·OCH3, …


Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh Dec 2021

Theoretical Investigation Of The Co-C Bond Activation In Methylcobalamin And Adenosylcobalamin-Dependent Systems: Mechanistic Insights., Arghya Pratim Ghosh

Electronic Theses and Dissertations

The vitamin B12 derivates, otherwise known as cobalamin (Cbl), are ubiquitous organometallic cofactors. The biologically active forms of Cbl, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), act as cofactors in different physiological reactions for both prokaryotes and eukaryotes. A crucial aspect of the Cbl-mediated systems is the activation of the organometallic Co-C bond that plays a critical role in its catalytic activity. One of the most remarkable features of this Co-C bond is its unusual activation in AdoCbl-dependent enzymatic reactions, where a trillion-fold rate acceleration of the Co-C bond cleavage is observed inside the enzyme compared to the isolated …


Computational Investigations Of The Photochemical Properties Of B12-Dependent Systems: From Solution To Enzymes., Megan Toda Mackintosh Dec 2021

Computational Investigations Of The Photochemical Properties Of B12-Dependent Systems: From Solution To Enzymes., Megan Toda Mackintosh

Electronic Theses and Dissertations

The photochemical properties of the B12 family of molecules (cobalamins = Cbls) have been known for many years yet only until the 21st century have applications for the light-sensitivity of Cbls come to the surface. Photolabile Cbls can be used for the delivery of therapeutics with spatial and temporal control, in the generation of hydroxyl radicals, and in nature, as demonstrated in the catalytic cycle of coenzyme B12-dependent photoreceptors. This dissertation describes the use of computational methods to explore the photochemical properties of Cbl systems including antivitamins B12, a thiolato-cobalamin, and the coenzyme B …


Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt Nov 2021

Adsorption Of Helium On A Charged Propeller Molecule: Hexaphenylbenzene, Siegfried Kollotzek, Florent Calvo, Serge Krasnokutski, Fabio Zappa, Paul Scheier, Olof E. Echt

Faculty Publications

Physisorption on planar or curved graphitic surfaces or aromatic rings has been investigated by various research groups, but in these studies the substrate was usually strictly rigid. Here we report a combined experimental and theoretical study of helium adsorption on cationic hexaphenylbenzene (HPB), a propeller-shaped molecule. The orientation of its propeller blades is known to be sensitive to the environment, with substantial differences between the molecule in the gas phase and in the crystalline solid. Mass spectra of HenHPB+, synthesized in helium nanodroplets, indicate enhanced stability for ions containing n = 2, 4, 14, 28, 42, …


Effects Of Gamma-Radiation On The Evolution Of Copper Corrosion Dynamics In Deep Geological Repository Solution Environments, Lindsay J. Grandy Nov 2021

Effects Of Gamma-Radiation On The Evolution Of Copper Corrosion Dynamics In Deep Geological Repository Solution Environments, Lindsay J. Grandy

Electronic Thesis and Dissertation Repository

The Canadian plan for permanent disposal of used nuclear fuel involves a used fuel container (UFC), a carbon steel vessel with a copper coating to provide the corrosion protection. The corrosion conditions for the copper layer of the UFC are expected to involve small, stagnant water volumes, pH values between 6 and 9, and a continuous flux of γ-radiation emitted from the radionuclides trapped in the fuel matrix. While γ-radiation does not affect the copper metal directly, humid air and water will radiolytically decompose into redox-active and acidic species which will be produced at constant concentrations and can alter the …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Exploring The Geometric And Electronic Properties Of Palladium Doped Silicon Clusters, Madison Winkeler, Ciara N. Richardson Nov 2021

Exploring The Geometric And Electronic Properties Of Palladium Doped Silicon Clusters, Madison Winkeler, Ciara N. Richardson

Scholars Week

Transition metal-doped silicon clusters have unique properties and have been studied as building blocks for nanomaterials and microelectronics. Here, the structure and properties of candidate palladium doped silicon clusters (SinPd2: n=1-17) were determined using global optimization techniques on a high performance computing cluster at the San Diego Supercomputing Center. Then geometric structures were further optimized utilizing the B3LYP method with 6-311+G(d) basis sets for silicon and lanl2dz pseudopotential for palladium, followed by the larger DSDPBEP86 method with 6-311+G(2d) basis sets for silicon and SDD pseudopotential for palladium, as implemented in the Gaussian 16 program package. The energetics for each cluster …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Non-Adiabatic Excited State Molecular Dynamics Using Ehrenfest And Modulated X-Ray Absorption In Titania, Alexander Matthew Meyer Nov 2021

Non-Adiabatic Excited State Molecular Dynamics Using Ehrenfest And Modulated X-Ray Absorption In Titania, Alexander Matthew Meyer

LSU Doctoral Dissertations

This dissertation contains two separate sections aside from an introduction (Chapter 1): theory and methods (Chapter 2), time dependent density functional theory with Ehrenfest for excited state lifetimes in materials (Chapter 3), and simulated field modulated X-ray absorption in titania (Chapter 4).

Excited state lifetime in insulators and semiconductors can be difficult to compute using quantum chemistry due to their dense excited states. Non-radiative decay in these materials requires the use of non-adiabatic effects to dissipate energy through the means of electron-nuclear coupling such as coherent phonon generation. One method of approaching this challenge in these materials is using Ehrenfest …