Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 67

Full-Text Articles in Chemistry

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer Jul 2017

Dengue Virus Ns2b/Ns3 Protease Inhibitors Exploiting The Prime Side, Kuan-Hung Lin, Akbar Ali, Linah Rusere, Djade I. Soumana, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein …


Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer Jun 2017

Interdependence Of Inhibitor Recognition In Hiv-1 Protease, Janet L. Paulsen, Florian Leidner, Debra A. Ragland, Nese Kurt Yilmaz, Celia A. Schiffer

Celia A. Schiffer

Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. …


Discovery Of Thienoquinolone Derivatives As Selective And Atp Non-Competitive Cdk5/P25 Inhibitors By Structure-Based Virtual Screening, Arindam Chatterjee, Stephen J. Cutler, Robert J. Doerksen, Ikhlas A. Khan, John S. Williamson Mar 2017

Discovery Of Thienoquinolone Derivatives As Selective And Atp Non-Competitive Cdk5/P25 Inhibitors By Structure-Based Virtual Screening, Arindam Chatterjee, Stephen J. Cutler, Robert J. Doerksen, Ikhlas A. Khan, John S. Williamson

John S. Williamson

Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer’s disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening workflow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2- …


Discovery And Characterization Of A Potent And Selective Inhibitory Of Aedes Aegypti Inward Rectifier Potassium Channels, Matthew F. Rouhier, Rene Raphemot, Daniel R. Swale, Emily Days, C. David Weaver, Kimberly M. Lovell, Leah C. Konkel, Darren W. Engers, Sean F. Bollinger, Corey Hopkins, Peter M. Piermarini, Jerod S. Denton Oct 2016

Discovery And Characterization Of A Potent And Selective Inhibitory Of Aedes Aegypti Inward Rectifier Potassium Channels, Matthew F. Rouhier, Rene Raphemot, Daniel R. Swale, Emily Days, C. David Weaver, Kimberly M. Lovell, Leah C. Konkel, Darren W. Engers, Sean F. Bollinger, Corey Hopkins, Peter M. Piermarini, Jerod S. Denton

Matthew F Rouhier

Vector-borne diseases such as dengue fever and malaria, which are transmitted by infected female mosquitoes, affect nearly half of the world's population. The emergence of insecticide-resistant mosquito populations is reducing the effectiveness of conventional insecticides and threatening current vector control strategies, which has created an urgent need to identify new molecular targets against which novel classes of insecticides can be developed. We previously demonstrated that small molecule inhibitors of mammalian Kir channels represent promising chemicals for new mosquitocide development. In this study, high-throughput screening of approximately 30,000 chemically diverse small-molecules was employed to discover potent and selective inhibitors of Aedes …


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Mar 2016

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Albert Fratini

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer Jan 2016

The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface …


Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo Jan 2016

Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo

Celia A. Schiffer

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by …


Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick Jan 2016

Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick

Celia A. Schiffer

This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety …


Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco Jan 2016

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco

Celia A. Schiffer

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the …


Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler Jan 2016

Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler

Celia A. Schiffer

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to …


Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer Jan 2016

Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer

Celia A. Schiffer

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies …


Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski Jan 2016

Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski

Celia A. Schiffer

The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the …


A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom Jan 2016

A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Though the steps of human immunodeficiency virus type 1 (HIV-1) virion maturation are well documented, the mechanisms regulating the proteolysis of the Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) remain obscure. One proposed mechanism argues that the maturation intermediate p15NC must interact with RNA for efficient cleavage by the PR. We investigated this phenomenon and found that processing of multiple substrates by the HIV-1 PR was enhanced in the presence of RNA. The acceleration of proteolysis occurred independently from the substrate's ability to interact with nucleic acid, indicating that a direct interaction between substrate and RNA is not …


A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon Jan 2016

A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon

Celia A. Schiffer

The therapeutic benefits of the neuraminidase (NA) inhibitor oseltamivir are dampened by the emergence of drug resistance mutations in influenza A virus (IAV). To investigate the mechanistic features that underlie resistance, we developed an approach to quantify the effects of all possible single-nucleotide substitutions introduced into important regions of NA. We determined the experimental fitness effects of 450 nucleotide mutations encoding positions both surrounding the active site and at more distant sites in an N1 strain of IAV in the presence and absence of oseltamivir. NA mutations previously known to confer oseltamivir resistance in N1 strains, including H275Y and N295S, …


Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer Jan 2016

Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer

Celia A. Schiffer

Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound …


Methyl Transfer By Substrate Signaling From A Knotted Protein Fold, Thomas Christian, Reiko Sakaguchi, Agata P. Perlinska, George Lahoud, Takuhiro Ito, Erika A. Taylor, Shigeyuki Yokoyama, Joanna I. Sulkowska, Ya-Ming Hou Dec 2015

Methyl Transfer By Substrate Signaling From A Knotted Protein Fold, Thomas Christian, Reiko Sakaguchi, Agata P. Perlinska, George Lahoud, Takuhiro Ito, Erika A. Taylor, Shigeyuki Yokoyama, Joanna I. Sulkowska, Ya-Ming Hou

Erika A. Taylor, Ph.D.

Proteins with knotted configurations, in comparison with unknotted proteins, are restricted in conformational space. Little is known regarding whether knotted proteins have sufficient dynamics to communicate between spatially separated substrate-binding sites. TrmD is a bacterial methyltransferase that uses a knotted protein fold to catalyze methyl transfer from S-adenosyl methionine (AdoMet) to G37-tRNA. The product, m1G37-tRNA, is essential for life and maintains protein-synthesis reading frames. Using an integrated approach of structural, kinetic, and computational analysis, we show that the structurally constrained TrmD knot is required for its catalytic activity. Unexpectedly, the TrmD knot undergoes complex internal movements that respond to AdoMet …


Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya Dec 2015

Interrogating Metabolism In Brain Cancer, Travis Salzillo, Jingzhe Hu, Linda Nguyen, Nicholas Whiting, Jaehyuk Lee, Joseph Weygand, Prasanta Dutta, Shivanand Pudakalakatti, Niki Zacharias Millward, Seth Gammon, Frederick F. Lang, Amy B. Heimberger, Pratip Bhattacharya

Nicholas Whiting

Many existing and emerging techniques of interrogating metabolism in brain cancer are at an early stage of development. A few clinical trials that employ these techniques are in progress in patients with brain cancer to establish the clinical efficacy of these techniques. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy.


C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin Nov 2015

C–N Bond Rotation And E–Z Isomerism In Some N-Benzyl-N-Methylcarbamoyl Chlorides: A Dft Study, Michael Horwath, Vladimir Benin

Vladimir Benin

The current report presents the first theoretical study of the restricted CN bond rotation in carbamoyl chlorides. Several N-benzyl-N-methylcarbamoyl chlorides were investigated, with varying pattern of substitution in the aromatic ring. Optimizations and frequency calculations were conducted employing DFT at the B3LYP/6-31+G(d) level of theory. Each of the studied structures exhibits a pair of rotamers (s-Z and s-E), generated upon rotation around the C(O)N bond. The s-E isomer is the global minimum in every case, but the preference for it is usually less than 1 kcal/mol. Two possible transition state structures were identified for the rotamer interconversion: TSsyn and TSanti, …


Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin Nov 2015

Preparation And Characterization Of Some Substituted Benzyl N-Nitrosocarbamates Containing An N-2-(Methylthio)Ethyl Or A Bis(2-Aminoethyl)Sulfide Functionality, Satya Venkata, Eric Shamo, Vladimir Benin

Vladimir Benin

The synthesis and characterization of some substituted benzyl N-nitrosocarbamates with an N-2-(methylthio)ethyl or a bis(2-aminoethyl)sulfide functionality is reported, as a part of a long-term goal to design and prepare novel photolabile structures that could be used as substances for controlled release of alkylating and/or crosslinking agents. The synthesis was accomplished by reaction of benzyl chloroformates with the corresponding amines, resulting in the preparation of carbamates. The latter were subsequently nitrosated, utilizing two different N-nitrosation methods, to yield the target structures.


The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin Nov 2015

The Tetrafluoroborate Salt Of 4-Methoxybenzyl N-2-(Dimethylamino)Ethyl-N-Nitrosocarbamate: Synthesis, Crystal Structure And Dft Calculations, Helene Hedian, Vladimir Benin

Vladimir Benin

The tetrafluoroborate salt of 4-methoxybenzyl N-2-(dimethylamino)ethyl-N-nitrosocarbamate was prepared in two steps, via the corresponding carbamate. Its crystal structure is monoclinic, space group P21/c. The unit cell dimensions are: a = 19.499(8) Å, b = 5.877(3) Å, c = 15.757(7) Å, α = 90°, β = 110.019(7)°, γ = 90°, V = 1696.5(12) Å3, Z = 4. The structure exhibits an unexpected, pseudo-gauche conformation with respect to the C2–C3 bond, due to a stabilizing hydrogen bond between the carbonyl oxygen (O1) and the hydrogen atom at the trialkylammonium center (H3n), with a distance between them of 2.37 Å. DFT calculations on …


A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin Nov 2015

A Sodium Salt Of The Dimer Of Boronoterephthalic Acid Anhydride, Scott Simmons, Albert Fratini, Vladimir Benin

Vladimir Benin

The title compound, sodium bis­(6-carb­oxy-1-hy­droxy-3-oxo-1,3-dihydro-2,1-benzoxaborol-1-yl)oxidanium, Na+·C16H15B2O13-, was prepared in two steps from 2-bromo-p-xylene. Its crystal structure was determined at 140 K and has triclinic (P) symmetry. The compound presents a unique structural motif, including two units of the cyclic anhydride of boronoterephthalic acid, joined by a protonated, and thereby trivalent, oxonium center. Association in the crystal is realized by complementary hydrogen bonding of the carboxyl groups, as well as by coordination of the sodium cations to the oxygen centers on the five-membered rings.


Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin Nov 2015

Secondary N-Nitrosocarbamate Anions: Structure And Alkylation Reactions. A Dft Study, Vladimir Benin

Vladimir Benin

The current article reports theoretical studies (DFT: B3LYP/6-31+G(d)) on the structure and alkylation reactions of the anions of some secondary N-nitrosocarbamates, a class of ambident nucleophiles whose chemistry has been little explored. Several anions (1–4), with an increasing size of the carbamate alkyl (aryl) group were investigated, in an attempt to establish the influence of the size of that group on the thermal stability and regioselectivity of alkylation of the title anions. The conclusion is that thermal stability and the mode of reaction are affected significantly only in the presence of very large and branched carbamate groups. The thermal decomposition …


Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan Nov 2015

Preparation Of Phosphonoterephthalic Acids Via Palladium-Catalyzed Coupling Of Aromatic Iodoesters, Nathaniel Ivan, Vladimir Benin, Alexander Morgan

Vladimir Benin

The current article reports in detail the preparation of two phosphonoterephthalic acids: 2-phosphonoterephthalic acid (1) and 2,5-diphosphonoterephthalic acid (2). Efficient, scalable syntheses have been developed for both compounds based on Pd-catalyzed coupling reactions of iodinated terephthalate esters. Phosphonoterephthalic acids are potentially useful as flame-retardant additives or as monomers for the construction of acid-pendant polymer chains.


Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin Nov 2015

Preparation Of Some Substituted Terephthalic Acids, Susanna Branion, Vladimir Benin

Vladimir Benin

We report in detail the preparation of two substituted terephthalic acids: 2‐sulfomethylterephthalic acid (1) and 2‐phosphonoterephthalic acid (2). Efficient, short syntheses have been developed for both compounds. They are potentially useful monomers for construction of acid‐pendant polymer chains.


Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin Nov 2015

Theoretical Investigation Of A Reported Antibiotic From The 'Miracle Tree' Moringa Oleifera, Michael Horwath, Vladimir Benin

Vladimir Benin

Moringa oleifera, sometimes called the “Miracle Tree,” has received international attention for its potential to improve health in impoverished tropical areas. In addition to high vitamin content in the leaves and pods, the tree contains compounds with antioxidant and antibacterial properties. This study focused on the theoretical investigation of the suggested structure of one antibacterial compound, “pterygospermin,” whose existence was proposed after some studies of the roots of M. oleifera. The structure of pterygospermin was first proposed by a research group working in the 1950s, but later studies have not found evidence of this compound and have instead attributed the …


Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert Nov 2015

Synthesis And Flammability Testing Of Epoxy Functionalized Phosphorous-Based Flame Retardants, Vladimir Benin, Xuemei Cui, Alexander Morgan, Karl Seiwert

Vladimir Benin

Several potential new phosphorus-containing flame retardant molecules were evaluated for heat release reduction potential by incorporation of the molecules into a polyurethane, generated from methylene diphenyl diisocyanate and 1,3-propane diol. The heat release reduction potential of these substances was evaluated using the pyrolysis combustion flow calorimeter (PCFC). The polyurethanes were prepared in the presence of the potential flame retardants via solvent mixing and copolymerization methods to qualitatively evaluate their potential reactivity into the polyurethane prior to heat release testing. The functionality of the flame retardants was epoxide based that would potentially react with the diol during polyurethane synthesis. Flammability testing …


Synthesis And Flame Retardant Testing Of New Boronated And Phosphonated Aromatic Compounds, Vladimir Benin, Sravanthi Durganala, Alexander Morgan Nov 2015

Synthesis And Flame Retardant Testing Of New Boronated And Phosphonated Aromatic Compounds, Vladimir Benin, Sravanthi Durganala, Alexander Morgan

Vladimir Benin

The present report describes the preparation and use of some dimethyl terephthalate derivatives in transition metal-catalyzed coupling reactions to produce new reactive flame retardants. Dimethyl iodoterephthalate and dimethyl 2,5-diiodoterephthalate were successfully employed in the preparation of phosphonic and boronic esters and acids. The latter were tested for heat release with a microcombustion calorimeter (ASTM D7309) to determine the potential for heat release reduction of these flame retardant molecules. The results showed that the addition of boronic or phosphonic acids greatly lowered the heat release, due to a condensed phase (char formation) mechanism. Adding ester groups to the boronic acids or …


Heat Release Of Polyurethanes Containing Potential Flame Retardants Based On Boron And Phosphorus Chemistries, Vladimir Benin, Bastien Gardelle, Alexander Morgan Nov 2015

Heat Release Of Polyurethanes Containing Potential Flame Retardants Based On Boron And Phosphorus Chemistries, Vladimir Benin, Bastien Gardelle, Alexander Morgan

Vladimir Benin

Using a polyurethane of methylene diphenyl isocyanate and 1,3-propane diol, several new non-halogenated aromatic boron and phosphorus flame retardants were evaluated for heat release reduction potential using the pyrolysis combustion flow calorimeter (PCFC). The polyurethanes were prepared in the presence of the potential flame retardants via solvent mixing and copolymerization methods, and were then analyzed via spectroscopic methods to determine if the flame retardant was still present in the final product. PCFC testing on the resulting products showed that the flame retardant molecule can have different effects on heat release depending upon how it is mixed into the polyurethane. Some …


Preparation, Characterization And Dft Studies Of Some New N-Nitrosocarbamates And N-Nitrosoureas, Ragavan Narayanan, Helene Hedian, Eric Shamo, Vladimir Benin Nov 2015

Preparation, Characterization And Dft Studies Of Some New N-Nitrosocarbamates And N-Nitrosoureas, Ragavan Narayanan, Helene Hedian, Eric Shamo, Vladimir Benin

Vladimir Benin

We are presenting the preparation, characterization and density functional theory (DFT) studies {B3LYP/6-31+G(d)) of several reiated classes of N-nitrosocarbamates and N-nitrosoureas. The iong-range goal is the design and preparation of compounds, which would undergo photochemical or hydrolytic decomposition, to yield stabilized cyclic cations that can serve as alkylating agents at various nucleophilic centers, including DNA bases.


Synthesis, Structural Studies And Desilylation Reactions Of Some N-2-(Trimethylsilyl)Ethyl-N-Nitrosocarbamates, Arpitha Thakkalapally, Vladimir Benin Nov 2015

Synthesis, Structural Studies And Desilylation Reactions Of Some N-2-(Trimethylsilyl)Ethyl-N-Nitrosocarbamates, Arpitha Thakkalapally, Vladimir Benin

Vladimir Benin

The present report describes the preparation and characterization of several N-2-(trimethylsilyl)ethyl-N-nitrosocarbamates, designed as precursors to thermally unstable secondary N-nitrosocarbamate anions via fluoride-assisted cleavage. X-ray structural studies demonstrate that the core N-nitrosocarbamate moiety has a nearly planar geometry, with an s-E orientation at the N–N bond. DFT calculations (B3LYP/6-31+G(d)) reproduce accurately the structural features of the title compounds and detailed conformational analysis at the same level of theory addresses the long-standing issue of preferred geometries for three classes of related structures: N-nitrosocarbamates, N-nitrosoureas and N-nitrosoamides. Desilylation studies demonstrate that both the …