Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Chemistry

Halogen Bonding Interactions Of Haloaromatic Endocrine Disruptors And The Potential For Inhibition Of Iodothyronine Deiodinases, Craig A. Bayse Jan 2023

Halogen Bonding Interactions Of Haloaromatic Endocrine Disruptors And The Potential For Inhibition Of Iodothyronine Deiodinases, Craig A. Bayse

Chemistry & Biochemistry Faculty Publications

Halogen bonding (XB) is a potential mechanism for the inhibition of the thyroid-activating/deactivating iodothyronine deiodinase family of selenoproteins through interactions with halogenated endocrine disrupting compounds (EDCs). Trends in XB interactions were examined using density functional theory for a series of polyhalogenated dibenzo-1,4-dioxins, biphenyls, and other EDCs with methylselenolate, a simple model of the Dio active site selenocysteine. The strengths of the interactions depend upon the halogen (Br>Cl), the degree of substitution, and the position of the acceptor. In terms of donor-acceptor energies, interactions at the meta position are often the strongest, suggesting a link to the topology of THs, …


Synthesis And Characterization Of Novel Platinum(Ii) And Platinum(Iv) Complexes Containing 4,4′--Disubstituted--2,2′--Bipyridine Ligands For The Treatment Of Cancer, Van Vo Aug 2014

Synthesis And Characterization Of Novel Platinum(Ii) And Platinum(Iv) Complexes Containing 4,4′--Disubstituted--2,2′--Bipyridine Ligands For The Treatment Of Cancer, Van Vo

UNLV Theses, Dissertations, Professional Papers, and Capstones

Three series of platinum(II) and platinum(IV) complexes containing 4,4′-disubstituted-2,2′-bipyridine ligands have been synthesized and characterized by 1H NMR, 13C NMR spectroscopy, elemental analysis, mass spectroscopy, and differential scanning calorimetry measurements. The MTS cell proliferation assay was used to examine the in vitro anti-proliferative activities of these complexes in various human breast, lung, and prostate cancer cells. The cell's response to the complexes varies between different cell lines; however, the low EC50 values determined from the MTS data indicate that several of the complexes are much more potent than cisplatin.

Flow cytometric analysis of selected compounds revealed induction of apoptosis …