Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2021

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 188

Full-Text Articles in Chemistry

Hydrophobically Modified Isosorbide Dimethacrylates As Biomaterials For Bisphenol A Free Dental Fillings, Bilal Marie Dec 2021

Hydrophobically Modified Isosorbide Dimethacrylates As Biomaterials For Bisphenol A Free Dental Fillings, Bilal Marie

Dissertations

Amalgam and Bisphenol A glycerolate dimethacrylate (BisGMA) are the main dental filling materials in use today. Because of the negative perception of amalgam and its lower esthetic appeal, as well as the desire to replace the endocrine disruptor Bisphenol A, which is the building block of BisGMA, there has been a critical need to search for safer alternatives to these dental filling materials.

Isosorbide is a sugar-based molecule generally recognized as safe. It has been extensively studied as a replacement to the Bisphenol A core in various materials. However, isosorbide is extremely hygroscopic, and water uptake in dental fillings causes …


Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li Dec 2021

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li

Journal of Electrochemistry

Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and …


Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma Dec 2021

Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma

Journal of Electrochemistry

The preparation of iron oxide films with nanoporous structure by anodization has attracted much attention for its potential applications. However, the formation mechanism of porous structure during anodization is still unclear. In this paper, the composition of anodic current during the formation of nanoporous anodized iron oxide film was analyzed in combination with the current density-potential response (I-V curve) and the derivation of Faraday’s law. The results showed that the anodic current consisted of an ionic current (leading to the migration of ions to form oxide) and an electronic current (leading to the oxygen evolution), and the …


Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun Dec 2021

Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun

Journal of Electrochemistry

Lithium-ion batteries (LIBs) are among the most widely used energy storage devices. Whole-cell modeling and simulations of LIBs can optimize the design of batteries with lower costs and higher speeds. The Pseudo-Two-Dimensional (P2D) electrochemical model is among the most famous whole-cell models and widely applied in LIB simulations. P2D model consists of a series of kinetic equations to model Li+/Li diffusion in working/counter electrodes and electrolytes, which are filled in the porous electrodes and separator, and reactions at the interface of electrolyte and active particles. The traditional applications of P2D model, however, are limited to the cases where the current …


Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin Dec 2021

Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin

Journal of Electrochemistry

The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively …


Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang Dec 2021

Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang

Journal of Electrochemistry

Aqueous sodium-ion batteries show promising application in fields of large-scale storage of intermittent renewable energies owing to the earth-abundant sodium resources and incombustible aqueous electrolytes. Primary factors determining whether they can be commercially utilized are low cost and long lifetime. Among current electrode materials, NASICON-type NaTi2(PO4)3 arouses wide interests as an anode material for aqueous sodium-ion batteries as it offers a high specific capacity, fast Na-transport ability and reasonable working potential, however, suffering from insufficient cycling performance caused by severe dissolution of active materials in traditional aqueous electrolytes. In this work, a functional sulfate electrolyte …


Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao Dec 2021

Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao

Journal of Electrochemistry

Chromium oxide (Cr8O21) cathode material for lithium batteries was synthesized by thermal decomposition of chromium trioxide (CrO3) at high temperature. The electrochemical properties of chromium oxide depended on the time and temperature during the heat treatment. Pure phase chromium oxide was prepared, and the effects of heat treatment time on the structures and electrochemical properties of Cr8O21 were systematically studied. The first discharge mechanism of chromium oxide in lithium batteries was explored, and the results were similar to that in lithium-sulfur batteries. The crystal phases and electrochemical properties of the prepared …


Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan Dec 2021

Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan

Journal of Electrochemistry

As the heat conduction medium of fuel cell cooling system, coolant is very important for the thermal management of fuel cell stack. In practical application, coolant leakage into the stack often occurs. Due to the randomness of fault location of components, the location of coolant leakage is uncertain, which may occur on the cathode side or anode side of some or all single cells. The main effects of coolant pollution on fuel cell stack are as follows: the output of open circuit voltage decreases sharply, the consistency of single cells voltage decreases and so on, which seriously affects the normal …


Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang Dec 2021

Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang

Journal of Electrochemistry

In recent years, lithium-sulfur (Li-S) batteries have been considered as a promising candidate for the next generation of energy storage system due to their ultrahigh theoretical capacity (1675 mAh·g-1) and energy density (2600 Wh·kg-1). However, the practical application of Li-S batteries is seriously limited by their insulating nature of sulfur, the shuttle effect of polysulfides (LiPSs), and volume expansion during charging and discharging. To overcome those disadvantages, one of the commonly methods is to infiltrate sulfur into porous conductive carbon framework, such as porous carbon, hollow carbon spheres, graphene, carbon nanotubes and some composites of the above structures to achieve …


Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui Dec 2021

Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui

Journal of Electrochemistry

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


Interfacial Engineering And Photoelectrochemistry Of Patterned Metal/Semiconductor Heterostructures, Che Tan Dec 2021

Interfacial Engineering And Photoelectrochemistry Of Patterned Metal/Semiconductor Heterostructures, Che Tan

McKelvey School of Engineering Theses & Dissertations

Photoelectrochemical (PEC) cells enable the conversion of solar energy into storable fuels, which is critical in overcoming the intermittent nature of this largest renewable source. However, the majority of semiconductors used as photoelectrodes in these cells have low conversion efficiencies and/or stabilities. Silicon (Si) is an attractive semiconductor material for photoelectrodes, but the development of efficient Si-based photoanodes is challenging due to their instability in alkaline solutions. Thus, one focus of this dissertation is the design and fabrication of highly stable nickel (Ni)-patterned Si photoanodes through interfacial engineering of the barrier heights. Recently, hot carriers in plasmonic metal nanostructures have …


Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan Dec 2021

Rational Design Of Multifunctional Nanocatalysts For Environmental Remediation And Energy Conversion Technologies, Md Ariful Ahsan

Open Access Theses & Dissertations

The discovery of efficient and sustainable carbon-based nanotechnologies to solve both the scarcity of drinking water and global energy crisis has become a paramount task in the last decades. Owed to the fast population growth and industrialization of the modern society, access to potable water and clean energy technologies is becoming very hard around the globe. Water pollutants have become a serious threat to the environment and ecology because of their toxic nature. Parallelly, the current hydrocarbon-based fuel industries are generating high levels of contamination across the planet, making imperative the development of cleaner energy technologies. In this regard, the …


Understanding Students’ Global Interdependence In Science Instruction, Walter S. Smith Dec 2021

Understanding Students’ Global Interdependence In Science Instruction, Walter S. Smith

Journal of Global Education and Research

Multiple American educational organizations such as the National Education Association, Association for Supervision and Curriculum Development, and the Council of Chief State School Officers have advocated for globalizing the K-12 curriculum. The National Science Teaching Association (NSTA) in a position statement on international education and the Next Generation Science Standards have produced goals and standards for internationalizing the science curriculum by addressing topics such as climate change, environment, and disease that cross borders. In contrast to those pronouncements on the curriculum, this article views global science education through an instructional lens that focuses on a students’ global interdependence in science …


Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman Dec 2021

Interfaces And Dynamics In Polymeric 3d Printing And Crystalline Polymer Blends, Stevenson C. Perryman

Doctoral Dissertations

This dissertation presents experimental work that provide a foundation to rationally improve fused filament fabrication (FFF) and immiscible blend compatibilization. Objects generated from additive manufacturing processes, such as FFF, have intrinsic structural weaknesses which include two project specific examples: structural anisotropy and irreversible thermal strain. Due to low adhesion between individual print layers that results in macroscopic defects, the mechanical strength of printed objects when force is applied perpendicular to the build orientation is drastically reduced. In the first dissertation chapter, we present a protocol to produce interlayer covalent bonds by depositing multi-amine additives between individual layers of a print …


Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham Dec 2021

Formation Of Reactive Nitrogen Species During Dichloramine Decay And Their Impact On N Nitrosodimethylamine Formation Under Drinking Water Conditions, Huong Thu Pham

Graduate Theses and Dissertations

NDMA occurrence and formation pathways in drinking water systems are reviewed and NDMA yields are compared on the basis of disinfectant type, water chemistry, and precursor category. In chloramination, despite monochloramine being the predominant species between pH 7-9, evidence suggests that dichloramine is the primary species involved in NDMA formation. This is somewhat confounding as NDMA yields are maximal at pH 9, yet at pH 9 dichloramine decays faster than it forms and hence is present at trace levels; additionally, the proposed mechanism involves a spin-forbidden incorporation of dissolved oxygen as a triplet, which is presumably kinetically slow. This review …


Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti Dec 2021

Synthesis Of Polyethylene Glycol-Based Hydrogels And Silver/Gold Nanostructures For Biomedical Applications, Isabelle Ishimwe Niyonshuti

Graduate Theses and Dissertations

This work focuses on the synthesis of biocompatible polyethylene glycol (PEG)-based hydrogels, silver nanoparticles (AgNPs), and silver-gold nanocages (Ag-AuNCs) for biomedical applications. The dissertation includes two parts with Part I on the work of PEG-based hydrogel for wound healing applications and Part II on the work of Ag/Au nanostructures for antimicrobial applications. Part I studies PEG-based hydrogel for the delivery of fibroblast growth factors (FGFs) for wound healing applications, aiming to overcome the challenge of designing hydrogels capable of the sustained release of bioactive FGFs. This research develops new biocompatible anionic injectable hydrogel formulations based on Poly (Oligo Ethylene Glycol …


Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally Dec 2021

Gradient Generating Microfluidic Coculture System For Disease Modeling And Neural Development, Phaneendra Chennampally

Electronic Theses and Dissertations

Cellular microenvironment or cell niche plays an important role in developmental biology and disease pathophysiology. Physical or chemical signals in microenvironment drive the cellular activity. These signaling molecules are generated from the surrounding cells/tissues as part of intercellular communication; a fundamental property of a cell. Dynamic profile of these signaling molecules in the microenvironment plays a pivotal role in transfer of molecular information from cell to cell in disease proliferation or fate determination. Recapitulating these signaling cues in an in vitro study is difficult to achieve using standard cell culture techniques. However microfluidic systems are capable of addressing these issues, …


Functional Material Systems For Stimuli-Responsive Interference Coloration, Milad Momtaz Dec 2021

Functional Material Systems For Stimuli-Responsive Interference Coloration, Milad Momtaz

Theses and Dissertations

Part I: Responsive Interference Coloration (RIC) Systems for High-Performance Humidity Sensing

High-humidity conditions (85−100% relative humidity) have a variety of effects on many aspects of our daily lives. In spite of significant progress in the development of structural coloration-based humidity sensors, enhancing the sensitivity and visual humidity resolution of these sensors at high-humidity environment remains a big challenge. In this work, high-performance colorimetric humidity sensors based on environment-friendly konjac glucomannan (KGM) are introduced. These sensors are fabricated via thin-film interference and prepared using a simple, affordable, and scalable method. An effective approach is shown for markedly improving the sensitivity and …


Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman Dec 2021

Identification Of Phosphorous Loading Point Source Facilities To 303(D) Listed Nutrient Impaired Waters Through Watershed Delineation Using Arcgis For Life Cycle Assessment Applications, John Zimmerman

Chemical Engineering Undergraduate Honors Theses

The work done for this project is part of a larger “life cycle assessment (LCA) of novel electrochemical phosphorus recovery technology at the wastewater treatment plant and U.S. watershed scales” (Morrissey 2019). The goal of that LCA is to determine “environmental impacts of implementing electrochemical struvite recovery at the wastewater treatment plant, U.S watershed, and global scales” (Morrissey 2019). This project’s goal is to identify locations deemed more sensitive to eutrophication impacts. The results will be used as part of the life cycle inventory (LCI) accounting for geographically explicit phosphorus flows. The waters identified as impaired were sourced from the …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


An Innovative Triboelectric Stent Sensor: Prospective Cardiovascular Health Monitor Device, Ulises Vidaurri Romero Dec 2021

An Innovative Triboelectric Stent Sensor: Prospective Cardiovascular Health Monitor Device, Ulises Vidaurri Romero

Theses and Dissertations

Previous research that has focused on TENGs have lacked the proper application of this energy generator. Currently, heart disease remains the leading cause of death in the United States. With increasing demand for self-sustainable medical devices, this nitinol health monitor sensor device (NHMS) integrates the TENG applications with medical applications. The NHMS features memory shape nitinol electrodes that preserves the device structure while using PDMS and PVDF triboelectric effect to measure heart rate, blood pressure, and breathing patterns. Three constant pressures were measured in this study. At a constant pressure of stage 1, the NHMS produces an average AC of …


Synthesis, Characterization, And Direct-Ink-Writing Of Syntactic Foams, Andrea Irigoyen Dec 2021

Synthesis, Characterization, And Direct-Ink-Writing Of Syntactic Foams, Andrea Irigoyen

Open Access Theses & Dissertations

This project encompasses three different methods to fabricate syntactic foams using a PDMS matrix i.e., hollow spheres inclusion, pore generator leaching by solvent, and emulsion. The foam formation by using polysiloxane hollow spheres is done in a 3-step process. The first step is to create a core of polystyrene following a dispersion polymerization process. The goal for the size of the pore is to monodisperse and have an average diameter of 5-10 μm, so the polystyrene core must be as well within that range. After that, the cores are coated with a polysiloxane shell by following a polymerization by condensation …


Synthesis, Crystal Structure And Ionic Conductivity Of Ruddlesden-Popper Oxide Materials: Effects Of Ionic Radii And Defects On Lithium-Ionic Conductivity., Selorm Joy Fanah Dec 2021

Synthesis, Crystal Structure And Ionic Conductivity Of Ruddlesden-Popper Oxide Materials: Effects Of Ionic Radii And Defects On Lithium-Ionic Conductivity., Selorm Joy Fanah

Electronic Theses and Dissertations

Layered perovskite oxides of the Ruddlesden-Popper (RP) type structure can be good lithium-ion conductors for solid electrolyte applications in all-solid-state batteries, due to the large gap separating octahedral layers which can be useful pathways for Li-ion conduction. However, little work has been done on their lithium-ion transport properties in these materials despite their interesting structural properties. This work highlights the synthesis and study of the ionic conductivities in a series of n = 2 and 3 Ruddlesden-Popper oxides, as part of an ongoing investigation in search of alternative solid electrolyte materials. Several different strategies were employed for the enhancement of …


Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch Dec 2021

Synthesis And Characterization Of 4,6-Protected Glucosamine Derivatives And Branched Glycoconjugates, Jonathan Bietsch

Chemistry & Biochemistry Theses & Dissertations

Low molecular weight gelators (LMWGs) are small molecules that self-assemble in appropriate solvents to form three dimensional networks that immobilize the solvent, creating a supramolecular gel. The self-assembly of LMWGs occurs through non-covalent interactions such as hydrogen bonding, aromatic interactions, donor-acceptor interactions, Van der Waals interactions, hydrophobic forces, halogen bonding, etc. Due to self-assembly occurring through reversible non-covalent interactions, supramolecular gels can undergo a gel to solution transformation. Because of this, these materials can be sensitive to external stimuli such as temperature changes, pH changes, and other stimuli that effect non-covalent interactions. This makes the synthesis of LMWG’s an appealing …


Piezoelectric Signals In Vascularized Bone Regeneration, Delfo D’Alessandro, Claudio Ricci, Mario Milazzo, Giovanna Strangis, Francesca Forli, Gabriele Buda, Mario Petrini, Stefano Berrettini, M. Jasim Uddin, Serena Danti, Paolo Parchi Nov 2021

Piezoelectric Signals In Vascularized Bone Regeneration, Delfo D’Alessandro, Claudio Ricci, Mario Milazzo, Giovanna Strangis, Francesca Forli, Gabriele Buda, Mario Petrini, Stefano Berrettini, M. Jasim Uddin, Serena Danti, Paolo Parchi

Chemistry Faculty Publications and Presentations

The demand for bone substitutes is increasing in Western countries. Bone graft substitutes aim to provide reconstructive surgeons with off-the-shelf alternatives to the natural bone taken from humans or animal species. Under the tissue engineering paradigm, biomaterial scaffolds can be designed by incorporating bone stem cells to decrease the disadvantages of traditional tissue grafts. However, the effective clinical application of tissue-engineered bone is limited by insufficient neovascularization. As bone is a highly vascularized tissue, new strategies to promote both osteogenesis and vasculogenesis within the scaffolds need to be considered for a successful regeneration. It has been demonstrated that bone and …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


The Photophysical Studies Of Transition Metal Polyimines Encapsulated In Metal Organic Frameworks (Mof’S), Jacob M. Mayers Nov 2021

The Photophysical Studies Of Transition Metal Polyimines Encapsulated In Metal Organic Frameworks (Mof’S), Jacob M. Mayers

USF Tampa Graduate Theses and Dissertations

Light harvesting systems provide a platform that converts solar energy into other forms of energy. One of the most common examples of photon capturing and conversion into chemical energy is observed in photosynthetic organisms in both Eurkaroyic and Prokaryotic domains. Nature provides a model for successful light harvesting platforms which includes the compartmentalization of antenna complexes that contain separated donor and acceptor pairs that participate in efficient electron transfer processes. In order to mimic such systems, crystalline porous materials that exhibits regular cavities and pore dimensions provides an excellent starting place. Metal organic frameworks (MOFs) are a class of porous …