Open Access. Powered by Scholars. Published by Universities.®

Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

2021

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 57

Full-Text Articles in Chemistry

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li Dec 2021

Photoelectrochemical Sensing Based On Zr-Mofs For Homocysteine Detection, Wen-Xia Dong, Guang-Ming Wen, Bin Liu, Zhong-Ping Li

Journal of Electrochemistry

Due to the independent form of the light source and detection system, photoelectrochemical (PEC) sensor has the advantages of low background, high sensitivity and simple operation. So far, PEC systems have been widely used in the fields including the actual detection of metal ions, biological antibodies or antigens in environmental pollutants. When the photosensitive material is irradiated by a light source with an energy being equal to or greater than its band gap, electrons (e-) transition occurs from the valence band to the conduction band, leaving a hole (h+), at the same time, the generated electron-hole pair (e-/h+) separate, and …


Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma Dec 2021

Formation And Morphological Evolution Of Nanoporous Anodized Iron Oxide Films, Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma

Journal of Electrochemistry

The preparation of iron oxide films with nanoporous structure by anodization has attracted much attention for its potential applications. However, the formation mechanism of porous structure during anodization is still unclear. In this paper, the composition of anodic current during the formation of nanoporous anodized iron oxide film was analyzed in combination with the current density-potential response (I-V curve) and the derivation of Faraday’s law. The results showed that the anodic current consisted of an ionic current (leading to the migration of ions to form oxide) and an electronic current (leading to the oxygen evolution), and the …


Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun Dec 2021

Cyclic Voltammetric Simulations On Batteries With Porous Electrodes, Xue-Fan Cai, Sheng Sun

Journal of Electrochemistry

Lithium-ion batteries (LIBs) are among the most widely used energy storage devices. Whole-cell modeling and simulations of LIBs can optimize the design of batteries with lower costs and higher speeds. The Pseudo-Two-Dimensional (P2D) electrochemical model is among the most famous whole-cell models and widely applied in LIB simulations. P2D model consists of a series of kinetic equations to model Li+/Li diffusion in working/counter electrodes and electrolytes, which are filled in the porous electrodes and separator, and reactions at the interface of electrolyte and active particles. The traditional applications of P2D model, however, are limited to the cases where the current …


Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang Dec 2021

Functional Sulfate Electrolytes Enable The Enhanced Cycling Stability Of Nati2(Po4)3/C Anode Material For Aqueous Sodium-Ion Batteries, Shu-Jin Li, Zhi-Kang Cao, Wen-Kai Wang, Xiao-Han Zhang, Xing-De Xiang

Journal of Electrochemistry

Aqueous sodium-ion batteries show promising application in fields of large-scale storage of intermittent renewable energies owing to the earth-abundant sodium resources and incombustible aqueous electrolytes. Primary factors determining whether they can be commercially utilized are low cost and long lifetime. Among current electrode materials, NASICON-type NaTi2(PO4)3 arouses wide interests as an anode material for aqueous sodium-ion batteries as it offers a high specific capacity, fast Na-transport ability and reasonable working potential, however, suffering from insufficient cycling performance caused by severe dissolution of active materials in traditional aqueous electrolytes. In this work, a functional sulfate electrolyte …


Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao Dec 2021

Influence Of Heat Treatment Time On Cathode Material Cr8O21 For Lithium Battery, Jiu-Kang Teng, Qing-Jie Wang, Liang Zhang, Hong-Mei Zhang, Xiao-Tao Chen, Peng Zhang, Jin-Bao Zhao

Journal of Electrochemistry

Chromium oxide (Cr8O21) cathode material for lithium batteries was synthesized by thermal decomposition of chromium trioxide (CrO3) at high temperature. The electrochemical properties of chromium oxide depended on the time and temperature during the heat treatment. Pure phase chromium oxide was prepared, and the effects of heat treatment time on the structures and electrochemical properties of Cr8O21 were systematically studied. The first discharge mechanism of chromium oxide in lithium batteries was explored, and the results were similar to that in lithium-sulfur batteries. The crystal phases and electrochemical properties of the prepared …


Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan Dec 2021

Effect Of Glycol Based Coolant Pollution On Pem Fuel Cells Stack And Recovery Measures, Cong-Yi Zhu, Xiao-Hui Li, Quan-Quan Gan

Journal of Electrochemistry

As the heat conduction medium of fuel cell cooling system, coolant is very important for the thermal management of fuel cell stack. In practical application, coolant leakage into the stack often occurs. Due to the randomness of fault location of components, the location of coolant leakage is uncertain, which may occur on the cathode side or anode side of some or all single cells. The main effects of coolant pollution on fuel cell stack are as follows: the output of open circuit voltage decreases sharply, the consistency of single cells voltage decreases and so on, which seriously affects the normal …


Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang Dec 2021

Nitrogen-Sulfur Co-Doped Porous Carbon Preparation And Its Application In Lithium-Sulfur Batteries, Zhao Gui-Xiang, Hafiz Zaki Ahmed Wail, Zhu Fu-Liang

Journal of Electrochemistry

In recent years, lithium-sulfur (Li-S) batteries have been considered as a promising candidate for the next generation of energy storage system due to their ultrahigh theoretical capacity (1675 mAh·g-1) and energy density (2600 Wh·kg-1). However, the practical application of Li-S batteries is seriously limited by their insulating nature of sulfur, the shuttle effect of polysulfides (LiPSs), and volume expansion during charging and discharging. To overcome those disadvantages, one of the commonly methods is to infiltrate sulfur into porous conductive carbon framework, such as porous carbon, hollow carbon spheres, graphene, carbon nanotubes and some composites of the above structures to achieve …


Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui Dec 2021

Structure Analysis Of Pemfc Cathode Catalyst Layer, Rui-Qing Wang, Sheng Sui

Journal of Electrochemistry

The sluggish oxygen reduction reaction (ORR) on the cathode of the proton exchange membrane fuel cell (PEMFC) has always been one of the key factors limiting its commercialization. The optimization of the cathode catalytic layer structure plays an important role in improving fuel cell performance and reducing production costs. In this paper, two different catalysts (platinum nanoparticles (Pt-NPs) and platinum nanowires (Pt-NWs)) were prepared by using catalyst coated substrate (CCS) method. By constructing a double-layer catalytic layer structure, we analyzed the effect of different catalytic layer structures by performing a single cell test. The results showed that the dense platinum …


Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai Dec 2021

Copper Nanoparticles In-Situ Anchored On Nitrogen-Doped Carbon For High-Efficiency Oxygen Reduction Reaction Electrocatalyst, Hui-Fang Yuan, Yue Zhang, Xing-Wu Zhai, Li-Bing Hu, Gui-Xian Ge, Gang Wang, Feng Yu, Bin Dai

Journal of Electrochemistry

Compared with noble metal platinum (Pt)-based catalysts, inexpensive non-noble metal electrocatalysts have attracted extensive attention for oxygen reduction reaction (ORR). Herein, chitosan as a kind of biomass resource rich in nitrogen and carbon was used to prepare nitrogen-doped carbon (N-C) and N-C in-situ anchored by copper nanoparticles (Cu/N-C). The as-obtained N-C and Cu/N-C nanoparticles were successfully used as non-noble eletrocatalysts tested for ORR. Compared with the N-C, the Cu/N-C showed the high surface area of 607.3 m 2·g-1 with the mean pore size of 2.5 nm and the pore volume of 0.40 cm3·g-1. The most positive Gibbs free …


Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki Dec 2021

Multifunctional Programmable Self-Assembled Nanoparticles In Nanomedicine, Yoshie Sakamaki

Graduate Theses and Dissertations

Developing methodologies to control the architecture of nanoparticles (NPs) at the atomic level prevents their inhomogeneity and leads to a variety of expected functions. Rationally designed nanoparticles can either be programmed or crystallized structures into pre-determined structures achieving tunable particle pore size and physiochemistry. In this dissertation, two broad classes of multifunctional nanoparticles are developed, metal-organic frameworks and DNA-NP aggregates.

Metal-organic frameworks are a novel class of highly porous crystalline materials built from organic linkers and metal cluster-based secondary building units. However, applications in bioremediation have not been developed very well especially in applications regarding drug delivery systems (DDS). The …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


Performance And Mechanism Of PtXCuY/C Electrocatalyst For Methanol Oxidation, Jia Tang, Xiao-Ming Zhang, Shan-Sheng Yu, Su-Li Wang, Gong-Quan Sun Oct 2021

Performance And Mechanism Of PtXCuY/C Electrocatalyst For Methanol Oxidation, Jia Tang, Xiao-Ming Zhang, Shan-Sheng Yu, Su-Li Wang, Gong-Quan Sun

Journal of Electrochemistry

Direct methanol fuel cell (DMFC), which directly converts the chemical energy of methanol fuel into electrical energy, has the advantages of high energy conversion efficiency, environmental friendliness, and abundance of fuel sources. DMFC is considered as the promising substitutes in the field of portable devices, military applications, and stationary power stations, while the broad application is severely hindered by the sluggish kinetic of methanol oxidation reaction (MOR) in the anode and the high cost of platinum (Pt)-based anodic electrocatalysts. Herein, a series of carbon supported PtxCuy (PtxCuy/C) binary metal electrocatalysts, featured with high …


Electrochemical Synthesis Of P-(Β-Hydroxyethyl Sulfone) Aniline, Hao Guo, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Oct 2021

Electrochemical Synthesis Of P-(Β-Hydroxyethyl Sulfone) Aniline, Hao Guo, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

Para-ester is the most important intermediate for the preparation of ethylene sulfone type reactive dyes, which is usually used in the dyeing of cellulose fibers and synthetic fibers. P-(β-hydroxyethyl sulfone) aniline is an important intermediate for the synthesis of para-ester. In this paper, p-(β-hydroxyethyl sulfone) aniline was prepared by electrochemical method, having the advantages of simple process, mild reaction condition, less environmental pollution, easy reaction control and so on. It has strong development potential and industrial application prospect. The electrochemical reduction of p-nitrophenyl-β-hydroxyethyl sulfone on a lead plate electrode to prepare p-(β-hydroxyethyl …


Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang Oct 2021

Mathematical Expression And Quantitative Analysis Of Impedance Spectrum On The Interface Of Glassy Carbon Electrode, Lei Cheng, Pu-Xuan Yan, You-Jun Fan, Hua-Hong Zou, Hong Liang

Journal of Electrochemistry

Glassy carbon electrode (GCE) is a common basic electrode for various electrochemical sensors, and the detection properties are determined by its interfacial characteristics. In this paper, we established an equivalent circuit including electrolyte resistance (Rel), charge transport resistance (Rct), diffusion impedance (Rdi, Cdi), electrochemical (oxidation/reduction) reaction impedance (RR, CR), surface adsorption impedance (Rads , Cads), double-layer capacitance (CDL), and derived the mathematical expression for the equivalent circuit. The Rel and CDL are contributed by inactive …


Effect Of Alkyl Chain Length Of Symmetrical Quaternary Ammonium Hydroxide On Oxalic Acid Electroreduction Reaction, Bo Huang, Xin-Sheng Zhang, Dong-Fang Niu, Shuo-Zhen Hu Oct 2021

Effect Of Alkyl Chain Length Of Symmetrical Quaternary Ammonium Hydroxide On Oxalic Acid Electroreduction Reaction, Bo Huang, Xin-Sheng Zhang, Dong-Fang Niu, Shuo-Zhen Hu

Journal of Electrochemistry

Glyoxylic acid with the dual characteristics of acid and aldehyde is an important chemical raw material and organic synthesis intermediate, which is extensively used in the perfumery, pharmaceutical and fine chemical industries. A family of symmetric quaternary ammonium hydroxides (QAHs) with different alkyl chain lengths was used as the additives in generating glyoxylic acid from oxalic acid electroreduction reaction (OAER). The effects of alkyl chain length on OAER and the corresponding side reaction, i.e., hydrogen evolution reaction (HER), were investigated. Linear sweep voltammetric (LSV) results showed that the adsorption of the additives suppressed more on the HER than that on …


Synthesis Of Nickel Phosphide/Nitrogen Phosphorus Co-Doped Carbon And Its Application In Lithium Ion Batteries, Jian Hu, Yan-Shuang Meng, Qian-Ru Hu Oct 2021

Synthesis Of Nickel Phosphide/Nitrogen Phosphorus Co-Doped Carbon And Its Application In Lithium Ion Batteries, Jian Hu, Yan-Shuang Meng, Qian-Ru Hu

Journal of Electrochemistry

In recent years, the nickel-based phosphide has drawn great attention because of its low intercalation/deintercalation platform and lower polarization compared to sulfides and oxides as anodes for next-generation high-energy lithium-ion batteries. The Ni2P anode can deliver high theoretical specific capacity of 542 mAh·g-1, but it subject to a conversion reaction mechanism, which make them unsuitable for commercial applications. The agglomeration of Ni2P nanoparticles during material fabrication and the structural deterioration of electrode associated with large volume change during charge-discharge process lead to poor cycle stability and low utilization of active materials. Meanwhile, the low intrinsic conductivity …


One-Pot Synthesis Of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst And Its Performance For Zinc-Air Battery, Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou Aug 2021

One-Pot Synthesis Of Fe2O3@Fe-N-C Oxygen Reduction Electrocatalyst And Its Performance For Zinc-Air Battery, Hua Lin, Yi-Jin Wu, Jun-Tao Li, Yao Zhou

Journal of Electrochemistry

Oxygen reduction reaction (ORR) plays a profound role in determining cathode performance in metal-air batteries and fuel cells. Owing to its inherently sluggish kinetics, high-performance ORR catalysts which favors the scissoring of O-O bond and formation of O-H bond are a requisite. In this regard, Pt has been explored as the most efficient ORR electrocatalysts. Nevertheless, due to its expensiveness, the usage of Pt catalysts represents one of the major sources of cost in those energy conversion devices. Thus, the development of alternative ORR electrocatalysts with minimized Pt utilization has been widely pursued over the past few decades. Metal-nitrogen-carbon catalysts …


Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan Aug 2021

Dft Study Of NiM@Pt1AuN-M-1 (N=19, 38, 55, 79; M = 1, 6, 13, 19) Core-Shell Orr Catalyst, Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan

Journal of Electrochemistry

The slow kinetics of oxygen reduction reaction (ORR) limits the performance of low temperature fuel cells. Thus, it needs to design effective catalysts with low cost. Core-shell clusters (CSNCs) show promising activity because of their size-dependent geometric and electronic effects. The ORR activity trend of Nim@Pt1Aun-m-1(n = 19, 38, 55, 79; m = 1, 6, 13, 19) was studied using the GGA-PBE-PAW methods. The adsorption configurations of *O, *OH and *OOH were optimized and the reaction free energies of four proton electron (H+ + e-) transfer steps were calculated. Using …


Study On Mxene-Carbon Black/Sulfur Composite In Integrated Electrode Of Lithium-Sulfur Batteries, Ye-Peng Fan, Ye-Qiang Luo, Pei-Kang Shen Aug 2021

Study On Mxene-Carbon Black/Sulfur Composite In Integrated Electrode Of Lithium-Sulfur Batteries, Ye-Peng Fan, Ye-Qiang Luo, Pei-Kang Shen

Journal of Electrochemistry

Lithium-sulfur (Li-S) batteries are considered as a promising energy storage device due to their ultrahigh theoretical energy density of 2500 Wh·kg-1 and low cost. However, the practical application of Li-S batteries is seriously limited by their low actual energy density, the shuttle effect of polysulfides (LiPSs), and the insulating nature of sulfur and lithium sulfides. Carbon materials have been developed in the design of sulfur hosts due to their adjustable pore structure and high electrical conductivity, but their non-polar surfaces have weak interactions with LiPSs. Herein, MXene-carbon black/sulfur (Ti3C2Tx-CB/S) composites were prepared and applied …


Preparation Of 3d Semi-Interpenetrated Polymer Networks Polymer Electrolyte For Lithium Metal Battery, Yun-Feng Zhang, Jia-Ying Wang, Xiao-Jie Li, Shi-Yu Zhao, Yang He, Shi-Kang Huo, Ya-Ying Wang, Chang Tan Aug 2021

Preparation Of 3d Semi-Interpenetrated Polymer Networks Polymer Electrolyte For Lithium Metal Battery, Yun-Feng Zhang, Jia-Ying Wang, Xiao-Jie Li, Shi-Yu Zhao, Yang He, Shi-Kang Huo, Ya-Ying Wang, Chang Tan

Journal of Electrochemistry

As the next generation high-energy batteries, lithium metal battery has attracted more and more attention due to its highest specific capacity (3860 mA·h·g-1) and the lowest anode potential (-3.04 V versus the standard hydrogen electrode, SHE). However, the safety problem caused by lithium dendrite growth is one of the biggest challenges for the commercialization of lithium metal batteries. Single ion conducting polymer electrolytes, which deliver high lithium ion transference number, represent one of the important strategies to inhibit lithium dendrite growth. However, the poor compatibility with electrodes and low ionic conductivity largely limit their practical application. In the present work, …


Preparation And Electrochemical Evaluation Of Mos2/Graphene Quantum Dots As A Catalyst For Hydrogen Evolution In Microbial Electrolysis Cell, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xiu-Li Song, Zhen-Hai Liang Aug 2021

Preparation And Electrochemical Evaluation Of Mos2/Graphene Quantum Dots As A Catalyst For Hydrogen Evolution In Microbial Electrolysis Cell, Hong-Yan Dai, Hui-Min Yang, Xian Liu, Xiu-Li Song, Zhen-Hai Liang

Journal of Electrochemistry

Microbial electrolysis cell (MEC) is a relatively new bioelectrochemical technology that produces H2 and meanwhile treats organic wastewater. Cathode hydrogen evolution catalyst plays a key role in MEC. The doping of Graphene Quantum Dots (GQDs) into MoS2 nanosheets can improve the catalytic activity of MoS2 by creating abundant defect sites both in the edge plane and the basal plane, as well as enhancing the electrical conductivity. In this paper, using Na2MoO4 , cysteine and GQDs as raw materials, a series of MoS2/GQDs composites were firstly synthesized via hydrothermal method, and then loaded …


Study On Inhibition Of Lithium Dendrite Growth By Mg(No3)2 Additive In Carbonate Electrolyte, Biao Zhang, Yi Shuai, Yu Wang, Na-Chuan Yang, Kang-Hua Chen Aug 2021

Study On Inhibition Of Lithium Dendrite Growth By Mg(No3)2 Additive In Carbonate Electrolyte, Biao Zhang, Yi Shuai, Yu Wang, Na-Chuan Yang, Kang-Hua Chen

Journal of Electrochemistry

In the lithium-sulfurized polyacrylonitrile battery system, the formation and growth of lithium dendrites in the negative electrode seriously deteriorate the charge and discharge performance of the battery. If the growth of lithium dendrites pierces the separator and causes thermal runaway, it will also bring serious damage to the battery, causing potential safety risks. In the carbonate electrolyte that is more conducive to stabilizing the positive electrode sulfurized polyacrylonitrile material, the growth of lithium dendrites is particularly serious. In this paper, magnesium nitrate was added to the carbonate electrolyte to investigate the combined effect of nitrate and magnesium ions on the …


A Comparison In Structural Transformation Of Li[NiXCoYMnZ]O2 (X = 0.6, 0.85) Cathode Materials In Lithium-Ion Batteries, Li-Juan Li, Zhen-Dong Zhu, Juan Dai, Rong-Rong Wang, Wen Peng Aug 2021

A Comparison In Structural Transformation Of Li[NiXCoYMnZ]O2 (X = 0.6, 0.85) Cathode Materials In Lithium-Ion Batteries, Li-Juan Li, Zhen-Dong Zhu, Juan Dai, Rong-Rong Wang, Wen Peng

Journal of Electrochemistry

In this paper, the phase transformation voltage ranges of two layered oxide ternary cathode materials, namely, Li(Ni0.85Co0.10Mn0.05)O2 (referred to Ni85, presenting high Ni content) and Li(Ni0.6Co0.2Mn0.2)O2 (referred to Ni60, presenting common low Ni content), were classified and determined. The structural differences between high Ni and common low Ni ternary materials were studied in order to understand the structure instability of high nickel material during the charging process. At the same time, the differential capacity (dQ·dV-1) curves of Ni85 and Ni60 positive electrodes …


Effect Of Conductive Additives On Electrochemical Performance Of All-Solid-State Li-S Batteries, Dong-Hao Wang, He-Feng Yan, Zheng-Liang Gong Aug 2021

Effect Of Conductive Additives On Electrochemical Performance Of All-Solid-State Li-S Batteries, Dong-Hao Wang, He-Feng Yan, Zheng-Liang Gong

Journal of Electrochemistry

All-solid-state lithium sulfur batteries (ASSLSBs) with inorganic solid electrolytes offer an opportunity to realize both high energy density (lithium metal ~ 3860 mAh·g-1, sulfur ~ 1675 mAh·g-1), safety and reliability, via eliminating the polysulfides shuttle effect and flammable liquid electrolyte. However, it still remains a huge challenge for ASSLSBs to achieve high areal active mass loading, high utilization efficiency of the active materials and good cycle stability simultaneously due to the insulating nature of sulfur and Li2S (conductivities of sulfur and Li2S are 5×10-30 S·cm-1 and 3.6×10-7 S·cm-1 at room temperature, respectively), and the large volume …


Preparation Of Coo/Rgo@Ni Foam Electrode And Its Electrocatalytic Reduction Of Co2, Qian Guo, Jia-Long Fu, Cheng-Yan Zhang, Chao-Yue Cai, Cheng Wang, Li-Hua Zhou, Rui-Bo Xu, Ming-Yan Wang Aug 2021

Preparation Of Coo/Rgo@Ni Foam Electrode And Its Electrocatalytic Reduction Of Co2, Qian Guo, Jia-Long Fu, Cheng-Yan Zhang, Chao-Yue Cai, Cheng Wang, Li-Hua Zhou, Rui-Bo Xu, Ming-Yan Wang

Journal of Electrochemistry

The worldwide extensive release of carbon dioxide (CO2) has caused serious environmental pollution and unprecedented climate change problems. Thus, for the sustainable development of human society, it is very necessary to convert CO2 to renewable fuels through clean and economical processes. The electrochemical CO2 reduction reaction (CO2RR) is regarded as a promising approach for the recycling of carbon resource and the generation of sustainable fuels. However, the slow kinetics and formation of multiple products in CO2RR hinder its large-scale application. Hence, great research efforts are made to develop electrocatalysts with high product …


Storage Performance And Mechanism Of Mose2 Nanospheres In Lithium And Magnesium Ion Batteries, Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lv, Kai-Jun Hong Aug 2021

Storage Performance And Mechanism Of Mose2 Nanospheres In Lithium And Magnesium Ion Batteries, Yi Peng, Wei Zhang, Fang-Zhen Zuo, Hao-Ying Lv, Kai-Jun Hong

Journal of Electrochemistry

Molybdenum diselenide (MoSe2) is a two-dimensional (2D) transition metal dichalcogenide (TMD) material, attracting wide attention in lithium ion battery (LIB) and exhibiting great potential in next-generation magnesium ion battery (MIB) due to its unique layered structure with fast ion mobility and weak van der Waals interlayer interaction. However, the reported literatures related to MoSe2 mainly focus on the enhancement of performance in LIB without deep storage mechanisms investigations. Meanwhile,the magnesium storage capacity and mechanisms have not been explored. In this work, MoSe2 nanospheres were synthesized via wet chemical route and followed by annealing treatment. When used …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Knn Based Piezo-Triboelectric Lead-Free Hybrid Energy Films, Abu Masa Abdullah, Muhtasim Ul Karim Sadaf, Farzana Tasnim, Horacio Vasquez, Karen Lozano, M. Jasim Uddin Aug 2021

Knn Based Piezo-Triboelectric Lead-Free Hybrid Energy Films, Abu Masa Abdullah, Muhtasim Ul Karim Sadaf, Farzana Tasnim, Horacio Vasquez, Karen Lozano, M. Jasim Uddin

Chemistry Faculty Publications and Presentations

In recent times, the triboelectric and piezoelectric effects have garnered significant attention towards developing advanced material composites for energy harvesting and sensory applications. In this work, potassium sodium niobate (KNN) based energy films (EF) have been developed to utilize mechanical energy while simultaneously taking advantage of triboelectric and piezoelectric mechanisms. The KNN particles were synthesized using a wet ball milling technique and then incorporated into a polyvinylidene difluoride (PVDF) matrix together with addition of multi wall carbon nanotubes (MWCNT). The film was used to develop a piezoelectric nanogenerator (PENG) fitted with copper electrodes. The piezoelectric output of the film was …


Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya Jul 2021

Thermoelectric Transport In Disordered Organic And Inorganic Semiconductors, Meenakshi Upadhyaya

Doctoral Dissertations

The need for alternative energy sources has led to extensive research on optimizing the conversion efficiency of thermoelectric (TE) materials. TE efficiency is governed by figure-of-merit (ZT) and it has been an enormously challenging task to increase ZT > 1 despite decades of research due to the interdependence of material properties. Most doped inorganic semiconductors have a high electrical conductivity and moderate Seebeck coefficient, but ZT is still limited by their high lattice thermal conductivity. One approach to address this problem is to decrease thermal conductivity by means of alloying and nanostructuring, another is to consider materials with an inherently low …