Open Access. Powered by Scholars. Published by Universities.®

Physical Processes Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Physical Processes

Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann Dec 2023

Temporal And Spectral Analysis Of 1es 2344+514 In Two Flaring States Observed By Veritas, Connor Poggemann

Physics

VERITAS observed the bright blazar 1ES 2344+514 during two flaring periods, one from Dec. 17 to Dec. 18, 2015 (MJD 57373-57374) with a peak flux of ~60% of the Crab and another from Nov. 28 to Dec. 3, 2021 (MJD 59546-59551) with a peak flux of ~20% of the Crab. This blazar, located at a redshift of z = 0.044, is classified as an extreme high-frequency-peaked BL Lacertae object (HBL). It is known to be variable, including several previous day-scale flares: Whipple on Dec. 20, 1995, VERITAS on Dec. 7, 2007, and MAGIC on Aug. 11, 2016. The VERITAS near-nightly …


Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez Dec 2021

Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez

Physics

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-meter telescopes which use the Imaging Atmospheric Cherenkov Technique to conduct high-energy gamma-ray astronomy. VERITAS detects magnitude and location information associated with Cherenkov light, and uses this information to indirectly observe gamma-rays through a software reconstruction process. VERITAS also records timing information corresponding to Cherenkov light detection, and this additional information could theoretically be incorporated into the reconstruction process to improve the accuracy of gamma-ray observations. The first step to including timing information is to understand when Cherenkov light detection would be expected from a known …


Brightest Cluster Galaxy Evolution Exploration: Comparing The Separation Of Cluster X-Ray Light And Visible Wavelength Galaxy Light With Spectral Data, Matthew Aaron Salinas Jul 2019

Brightest Cluster Galaxy Evolution Exploration: Comparing The Separation Of Cluster X-Ray Light And Visible Wavelength Galaxy Light With Spectral Data, Matthew Aaron Salinas

Physics

Brightest Cluster Galaxies (BCGs), the brightest galaxy in a cluster of hundreds to thousands of galaxies, are some of the biggest, brightest, and most massive galaxies in the universe. Characterizing a BCG can help discover more about galaxy evolution - the aging, changing, and possible merging (collisions) of galaxies. This project involves determining the separation of the peak of x-ray emission of the galaxy cluster, and the peak of visible emission of the BCG to characterize the system as being disturbed or undisturbed that can then lead to discoveries about its formation and evolution. We have found that 17.4% of …


Probing The Fitting Accuracy Of Active Galaxy Spectra, Aaron T. Line Mar 2016

Probing The Fitting Accuracy Of Active Galaxy Spectra, Aaron T. Line

Physics

Prior to this study, Dr. Vardha N. Bennert and collaborators selected a sample of ~100 local active galaxies to study the relationships between black hole mass and host galaxy properties. The broad Hβ width is necessary to determine black hole mass. This value is determined using a spectral decomposition code was scripted in IDL by Dr. Daeseong Park. The script fit spectral features and collected data for properties such as width of emission lines and continuum contribution percentages. The results were logged for further analysis.

To probe the accuracy of the fitting process, artificial spectra were created and fitted to …


Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul Sep 2015

Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul

Physics

A 23.7g fragment of the Lake Labyrinth Meteorite (fell in 1924, collected in 1934 at Lake Labyrinth in South Australia, Australia) was re-investigated for evidence of the presence of 98Tc using a two dimensional low-intensity gamma-ray spectrometer. A new calibration technique using 26Al sources found the gamma-rays previously thought to be due to 98Tc are more likely from 166Ho. The presence of 166Ho is most likely due to activation of the stable 165Ho in the meteorite from terrestrial background sources where it was stored.


Determining The Relationship Between The [Oiii] 5007 Å Emission Line Profile And The Stellar Velocity Dispersion In Active Galaxies, Nathaniel Milgram Jun 2015

Determining The Relationship Between The [Oiii] 5007 Å Emission Line Profile And The Stellar Velocity Dispersion In Active Galaxies, Nathaniel Milgram

Physics

The empirical relation between the stellar velocity dispersion (SVD) of the bulge and the mass of the central supermassive black hole (BH) suggests a link between host galaxy and BH evolution. For active galactic nuclei (AGNs), the BH mass (MBH) can be estimated in a straightforward way from the Doppler broadening of the broad emission lines using the so-called virial method. However, the powerful AGN continuum emission often outshines the underlying stellar absorption lines, making it difficult to measure SVD of the host galaxy. Thus, the MBH - SVD relation is difficult to establish for galaxies containing AGNs. As a …


Time Variation Of The Broad Hβ And Hα Emission Lines In Active Galactic Nuclei, Bryan R. Scott Dec 2013

Time Variation Of The Broad Hβ And Hα Emission Lines In Active Galactic Nuclei, Bryan R. Scott

Physics

High-quality Keck/LRIS long-slit spectra for a sample of 97 active galaxies selected from the Sloan Digital Sky Survey (redshift between 0.02 & 0.1; Black Hole Mass approximately 107 Solar Masses) were obtained between January 2009 and March 2010 in order to study the black hole (BH) mass scaling relation in the local universe. Typically, the width of the broad Hβ emission line is used to measure the mass of the black hole (MBH). However, signs of variability in the emission line profile are seen for eight objects: While broad Hβ emission lines had previously been observed in spectra from …


Determining The Location Of The Coronal Line Region Within Local Active Galactic Nuclei Using [Fe Vii] Emission Line Properties, Charles Grant Showley Jun 2013

Determining The Location Of The Coronal Line Region Within Local Active Galactic Nuclei Using [Fe Vii] Emission Line Properties, Charles Grant Showley

Physics

Given a sample of 99 local AGNs, we study the characteristics of the forbidden [Fe VII] coronal line for the purpose of determining the location of the coronal line region (CLR) within the AGN. We calculate the velocity of the clouds emitting [Fe VII] using the width of the [Fe VII] emission lines compared to [O II] emission lines to establish whether the clouds are inflowing or outflowing. We plot the [Fe VII] and [O II] flux ratios against the AGNs' known black hole masses and stellar velocity dispersions in order to see if there are any correlations between them. …


Modeling The Spectral Energy Distribution Of Mrk 421, Randall L. Oglesby May 2013

Modeling The Spectral Energy Distribution Of Mrk 421, Randall L. Oglesby

Physics

Blazars are astronomical objects thought to be powered by the release of gravitational energy by accretion of material into a supermassive black hole located in the central region of the host galaxy. Some AGN present strong relativistic outflows in the form of jets, with blazars being the particular subset whose jets are aligned with our line of sight. Even though blazars account for only a small fraction of all AGN, they are the dominant class source in the high-energy sky. In this thesis we study the spectral energy distribution of Mrk 421, a prototypical blazar. Using publicly available numerical code …


Study Of Accretion Effects Of Transients In Lmxb System, Quentin Lamicq Jun 2010

Study Of Accretion Effects Of Transients In Lmxb System, Quentin Lamicq

Physics

Neutron stars are intriguing stellar laboratories that are very exciting to study due to the presence of matter in an extreme state. The luminosity of some neutron star transients in low mass X-ray binary (LMXB) systems is known to have quiescent intervals that may be affected by the rate and duration of accretion from the companion star onto the neutron star. We refined a model of the luminosity of the neutron star to allow for possibility that the accretion rate declines at a steady rate until it reaches zero. After a neutron star goes through an outburst, the quiescent period …