Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Instrumentation

Retrieval Of Aerosol Microphysical Properties From Aeronet Photopolarimetric Measurements, Xiaoguang Xu Aug 2015

Retrieval Of Aerosol Microphysical Properties From Aeronet Photopolarimetric Measurements, Xiaoguang Xu

Department of Earth and Atmospheric Sciences: Dissertations, Theses, and Student Research

Atmospheric aerosols play an important role in earth climate by scattering and absorbing solar and terrestrial radiation, and indirectly through altering the cloud formation, life- time, and radiative properties. However, accurate quantification of these effects is in no small part hindered by our limited knowledge about the particle size distribution (PSD) and refractive index, the aerosol microphysical properties essentially pertain to aerosol optical and cloud-forming properties. The research goal of this thesis is to obtain the aerosol microphysical properties of both fine and coarse modes from the polarimetric solar radiation measured by the SunPhotometer of the Aerosol Robotic Network (AERONET). …


Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker Feb 2015

Productivity, Absorbed Photosynthetically Active Radiation, And Light Use Efficiency In Crops: Implications For Remote Sensing Of Crop Primary Production, Anatoly A. Gitelson, Yi Peng, Timothy J. Arkebauer, Andrew E. Suyker

School of Natural Resources: Faculty Publications

Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, …


A Fast Visible Infrared Imaging Radiometer Suite Simulator For Cloudy Atmospheres, Chao Liu, Ping Yang, Steven Platnick, Kerry G. Meyer, Chenxi Wang, Shouguo Ding Jan 2015

A Fast Visible Infrared Imaging Radiometer Suite Simulator For Cloudy Atmospheres, Chao Liu, Ping Yang, Steven Platnick, Kerry G. Meyer, Chenxi Wang, Shouguo Ding

Department of Earth and Atmospheric Sciences: Faculty Publications

A fast instrument simulator is developed to simulate the observations made in cloudy atmospheres by the Visible Infrared Imaging Radiometer Suite (VIIRS). The correlated k distribution technique is used to compute the transmissivities associated with absorbing atmospheric gases. The bulk scattering properties of ice clouds are based on the ice model used for the Moderate Resolution Imaging Spectroradiometer Collection 6 ice cloud products, and those ofwater clouds are computedwith the Lorenz-Mie theory. Two fast radiative transfer models based on precomputed ice cloud look-up tables are used for the VIIRS solar and infrared channels. The accuracy and efficiency of the fast …