Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Instrumentation

Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jan 2013

Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an …


Arcade 2 Observations Of Galactic Radio Emission, A. Kogut, D. J. Fixsen, S. M. Levin, M. Limon, P. M. Lubin, P. Mirel, M. Seiffert, Jack Singal, T. Villela, E. Wollack, C. A. Wuensche Jun 2011

Arcade 2 Observations Of Galactic Radio Emission, A. Kogut, D. J. Fixsen, S. M. Levin, M. Limon, P. M. Lubin, P. Mirel, M. Seiffert, Jack Singal, T. Villela, E. Wollack, C. A. Wuensche

Physics Faculty Publications

We use absolutely calibrated data from the ARCADE 2 flight in 2006 July to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free–free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index βsynch = −2.5±0.1, with free–free emission contributing 0.10±0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc |b| dependence or a model …


The Arcade 2 Instrument, Jack Singal, D. J. Fixsen, A. Kogut, S. Levin, M. Limon, P. Lubin, P. Mirel, M. Seiffert, T. Villela, E. Wollack, C. A. Wuensche Apr 2011

The Arcade 2 Instrument, Jack Singal, D. J. Fixsen, A. Kogut, S. Levin, M. Limon, P. Lubin, P. Mirel, M. Seiffert, T. Villela, E. Wollack, C. A. Wuensche

Physics Faculty Publications

The second generation Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE 2) instrument is a balloon-borne experiment to measure the radiometric temperature of the cosmic microwave background and Galactic and extragalactic emission at six frequencies from 3 to 90 GHz. ARCADE 2 utilizes a double-nulled design where emission from the sky is compared to that from an external cryogenic full-aperture blackbody calibrator by cryogenic switching radiometers containing internal blackbody reference loads. In order to further minimize sources of systematic error, ARCADE 2 features a cold fully open aperture with all radiometrically active components maintained at near 2.7 K without …


Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon Dec 2008

Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon

Physics Faculty Publications

Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of the Wilkinson Microwave Anisotropy Probe. One of these is a lack of large-scale power. Because the data otherwise match standard models extremely well, it is natural to consider perturbations of the standard model as possible explanations. We show that, as long as the source of the perturbation is statistically independent of the source of the primary CMB anisotropy, no such model can explain this large-scale power deficit. On the contrary, any such perturbation always reduces the probability of obtaining any given low value of …