Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Theses/Dissertations

Discipline
Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 70

Full-Text Articles in Instrumentation

Toltec: A New Multichroic Imaging Polarimeter For The Large Millimeter Telescope, Nat S. Denigris Mar 2024

Toltec: A New Multichroic Imaging Polarimeter For The Large Millimeter Telescope, Nat S. Denigris

Doctoral Dissertations

The TolTEC camera is a new millimeter-wave imaging polarimeter designed to fill the focal plane of the 50-m diameter Large Millimeter Telescope (LMT). Combined with the LMT, TolTEC offers high angular resolution (5", 6.3", 9.5") for simultaneous, polarization-sensitive observations in its three wavelength bands: 1.1, 1.4, and 2.0 mm. Additionally, TolTEC is designed to reach groundbreaking mapping speeds in excess of 1 deg2/mJy2/hr, which will enable the completion of deep surveys of large-scale structure, galaxy evolution, and star formation that are currently limited when considering practical observation times for other ground-based observatories. This thesis covers the …


Optimal Method For Reconstructing Polychromatic Maps From Broadband Observations With An Aysmmetric Antenna Pattern, Brianna Cantrall, Emory F. Bunn, Solomon Quinn Apr 2023

Optimal Method For Reconstructing Polychromatic Maps From Broadband Observations With An Aysmmetric Antenna Pattern, Brianna Cantrall, Emory F. Bunn, Solomon Quinn

Honors Theses

Broadband time-ordered data obtained from telescopes with a wavelength-dependent, asymmetric beam pattern can be used to extract maps at multiple wavelengths from a single scan. This technique is especially useful when collecting data on cosmic phenomena such as the Cosmic Microwave Background (CMB) radiation, as it provides the ability to separate the CMB signal from foreground contaminants. We develop a method to determine the optimal linear combinations of wavelengths (“colors”) that can be reconstructed for a given telescope design and the number of colors that are measurable with high signal-to-noise ratio. The optimal colors are found as eigenvectors of a …


Acceptable Title Pending: Probing The Limits Of Precision Measurement And Academic Assessment, Bobby King Jan 2023

Acceptable Title Pending: Probing The Limits Of Precision Measurement And Academic Assessment, Bobby King

Senior Projects Spring 2023

This is a project in two parts. The first is an attempt to impart onto the reader the necessary mental models required to understand a scientific experiment related to the improvement of gravitational wave detectors. Part one is illustrated in collaboration with Simone River Wilding, Sohpie Foley, Roma Taitwood, and Cam Goldberg.

Part two is a technical description of efforts made to reduce speckle in measurements of scattered light. Gravitational wave detection requires extremely high precision measurement, and one source of noise in the detectors is scattering off of defects and surface roughness in optical coatings. Research into the development …


Applications Of Digital Filters In Radio Astronomy, Joseph William Kania Jan 2023

Applications Of Digital Filters In Radio Astronomy, Joseph William Kania

Graduate Theses, Dissertations, and Problem Reports

The radio sky spans tens of orders of magnitude in length, density, and time.
In this thesis, using novel filtering techniques and two different telescopes,
we investigate two tracers of cosmic structure: Baryon Acoustic Oscillations
(BAOs) and Fast Radio Bursts (FRBs). BAOs formed as the universe cooled
after the Big Bang. BAOs provide a fiducial length scale of the universe
throughout cosmic time and thus can be used to understand how the universe
is evolving. FRBs are very bright, short timescale, bursts of as-yet unknown
origin which occur uniformly on the sky at a rate of a few thousand per …


A Method For Exploring The Habitability Of Earth-Like Exoplanets: Applications To Tess Objects Of Interest 203 B, 256 B, And 700 D, Paul Bonney Dec 2022

A Method For Exploring The Habitability Of Earth-Like Exoplanets: Applications To Tess Objects Of Interest 203 B, 256 B, And 700 D, Paul Bonney

Graduate Theses and Dissertations

The Transiting Exoplanet Survey Satellite (TESS) has and is continuing to discover a multitude of potentially habitable planet candidates. As more planets are detected and confirmed, it becomes increasingly important to strategically search for signs of habitability with which to differentiate and prioritize them for further observation, in particular with the James Webb Space Telescope (JWST). To facilitate this, I have created a method for prioritizing TESS planet candidates based on parameters derived from their light curves and have applied the method to the TESS Candidate Target List (CTL). This data set uses preliminary fits to transit modeling which can …


The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson Aug 2022

The Cosmic History Of X-Ray Binary Evolution, Woodrow Gilbertson

Graduate Theses and Dissertations

The Chandra Deep Fields provide an extraordinary window into the high-energy history of the cosmos. Observations of non-active galaxies within the deep fields can be leveraged to extract information about the formation and evolution of X-ray binaries (XRBs). Previous studies have suggested that the evolution of XRB luminosity can be expressed a function of physical parameters such as star formation rate, stellar mass, stellar age, and metallicity. The goal of this work is to develop and implement a complete physical parameterization for the luminosity of XRB populations, which can be utilized for a variety of further studies.

Chapter 1 provides …


Probing The Inner Structure Of Active Galactic Nuclei Through Reverberation Mapping, Viraja Chandrashekhar Khatu Jun 2022

Probing The Inner Structure Of Active Galactic Nuclei Through Reverberation Mapping, Viraja Chandrashekhar Khatu

Electronic Thesis and Dissertation Repository

In the centres of massive galaxies, active galactic nuclei (AGN) are supermassive black holes, surrounded by an accretion disk of ionized gas, that release tremendous energy in the form of electromagnetic radiation. Because AGN are unresolved through telescopes, we employ reverberation mapping (RM) to study their structure. RM capitalizes on the fact that AGN are variable – the continuum emission from the accretion disk varies, and surrounding gas (in the broad-line region, BLR) responds to those variations with a positive time lag. RM translates the measured time lag into a size of the BLR. Combined with gas velocities (measured from …


Tesing Cababilities Of Proposed Telescope Lynx Through Simulated Bubbles In The Intracluster Medium, Sierra Rose Hauck Apr 2022

Tesing Cababilities Of Proposed Telescope Lynx Through Simulated Bubbles In The Intracluster Medium, Sierra Rose Hauck

Honors Capstone Projects and Theses

No abstract provided.


Constraining The Star Formation Histories Of Galaxies In The Swift/Uvot + Manga (Swim) Value-Added Catalog, Nikhil Ajgaonkar Jan 2022

Constraining The Star Formation Histories Of Galaxies In The Swift/Uvot + Manga (Swim) Value-Added Catalog, Nikhil Ajgaonkar

Theses and Dissertations--Physics and Astronomy

Although our understanding about galaxy evolution has improved in the past few
decades, we still do not understand how galaxies suddenly stop forming stars and move towards a quiescent phase. In order to do that, we must derive the Star Formation Histories (SFHs) of galaxies, that trace the change in Star Formation (SF) inside the galaxy over the cosmic timescale. This is achieved by using a set of spatially resolved near-ultraviolet (NUV) and optical spectroscopic images of the galaxies. We generate the Swift/UVOT + MaNGA value added catalog (SwiM VAC; Molina et al., 2020b) which comprises 150 galaxies having a …


Preliminary Studies Of Background Rejection Capabilities For The Southern Wide−Field Gamma−Ray Observatory, Sonali Mohan Jan 2022

Preliminary Studies Of Background Rejection Capabilities For The Southern Wide−Field Gamma−Ray Observatory, Sonali Mohan

Dissertations, Master's Theses and Master's Reports

The Southern Wide-field Gamma-ray Observatory (SWGO), is a next-generation
gamma-ray observatory to be constructed in the Southern Hemisphere that will com-
plement current and future instruments by providing a wide-field coverage of a large
portion of the southern sky and a better sensitivity to the 100 GeVs to few PeVs
photon band to understand extreme astrophysical phenomena throughout the uni-
verse. Air shower events initiated by gamma rays will be recorded by the detector
and reconstructed to extract shower properties. The challenge for air-shower arrays
in the observation of gamma-ray sources is the large background of hadronic cos-
mic rays. …


Searching For Anomalous Extensive Air Showers Using The Pierre Auger Observatory Fluorescence Detector, Andrew Puyleart Jan 2022

Searching For Anomalous Extensive Air Showers Using The Pierre Auger Observatory Fluorescence Detector, Andrew Puyleart

Dissertations, Master's Theses and Master's Reports

Anomalous extensive air showers have yet to be detected by cosmic ray observatories. Fluorescence detectors provide a way to view the air showers created by cosmic rays with primary energies reaching up to hundreds of EeV . The resulting air showers produced by these highly energetic collisions can contain features that deviate from average air showers. Detection of these anomalous events may provide information into unknown regions of particle physics, and place constraints on cross-sectional interaction lengths of protons. In this dissertation, I propose measurements of extensive air shower profiles that are used in a machine learning pipeline to distinguish …


Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith Jan 2022

Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith

Graduate Theses, Dissertations, and Problem Reports

We catalog the ubiquity of Radio Frequency Interference (RFI) plaguing every modern radio telescope and investigate several ways to mitigate it in order to create better science-ready data products for astronomers. There are a myriad of possible RFI sources, including satellite uplinks and downlinks, cellular communications, air traffic radar, and natural sources such as lightning. Real-time RFI mitigation strategies must take these RFI characteristics into account, as the interfering signals can look significantly different at very high time and frequency resolutions.

We examine Spectral Kurtosis (SK) as a real-time statistical RFI detection method, and compare its flagging efficacy against simulated …


Inferential Statistics And Information Theoretical Measures: An Approach To Interference Detection In Radio Astronomy, Morgan R. Dameron Jan 2022

Inferential Statistics And Information Theoretical Measures: An Approach To Interference Detection In Radio Astronomy, Morgan R. Dameron

Graduate Theses, Dissertations, and Problem Reports

In a time when technology is rapidly growing, radio observatories are now able to expand their computational power to achieve higher receiver sensitivity power and a more flexible realtime computing approach to probe the universe for its composition and study new astronomical phenomena. This allows searches to go deeper into the universe, and results in the recording of massive quantities of observed data. At the same time, this increases the amount of radio frequency interference (RFI) found in the obtained observatory data. The high power of RFI easily masks the low power of extraterrestrial signals, making them hard to detect …


Pathfinding Fast Radio Bursts Localizations Using Very Long Baseline Interferometry, Pranav Rohit Sanghavi Jan 2022

Pathfinding Fast Radio Bursts Localizations Using Very Long Baseline Interferometry, Pranav Rohit Sanghavi

Graduate Theses, Dissertations, and Problem Reports

Fast radio bursts (FRBs) are millisecond-duration, bright radio transients of extragalactic origin. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope’s CHIME/FRB instrument and other radio telescopes across the globe have detected hundreds of FRBs. Their origins are a mystery. Precise localization within the host is critical to distinguish between progenitor models. This can be achieved through Very Long Baseline Interferometry (VLBI). Until now, VLBI localizations have only been carried out in targeted follow-up observations of some repeating sources which comprise a small fraction of the FRBs.

For this work, an interferometric array of 6m dishes was constructed at the Green …


Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats Jan 2022

Development Of A Fluxgate Magnetometer Model, Eleonora Olsmats

Honors Theses and Capstones

As a part of the UNH SWFO-L1 mission to monitor space weather and the sun’s behavior, the fluxgate magnetometer is an important component to measure external magnetic fields. The basic principle of a fluxgate magnetometer is to detect changes in the ambient magnetic field by inducing a magnetic field in a ferromagnetic material via a drive winding. Each magnetometer is unique due to the ferromagnetic properties of the core material which can be seen in the hysteresis loop which is a relationship between the magnetic field strength (H) and the induced magnetic field (B). Measuring the hysteresis of a fluxgate …


Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez Dec 2021

Modeling Cherenkov Light Detection Timing For The Very Energetic Radiation Imaging Telescope Array System, Keilan Finn Ramirez

Physics

The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of four 12-meter telescopes which use the Imaging Atmospheric Cherenkov Technique to conduct high-energy gamma-ray astronomy. VERITAS detects magnitude and location information associated with Cherenkov light, and uses this information to indirectly observe gamma-rays through a software reconstruction process. VERITAS also records timing information corresponding to Cherenkov light detection, and this additional information could theoretically be incorporated into the reconstruction process to improve the accuracy of gamma-ray observations. The first step to including timing information is to understand when Cherenkov light detection would be expected from a known …


On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Testing Spiral Density-Wave Theory In Disk Galaxies Using Multi-Wavelength Image Data, Star Formation History Maps And Spatially Resolved Stellar Clusters, Mohamed Shameer Abdeen May 2021

Testing Spiral Density-Wave Theory In Disk Galaxies Using Multi-Wavelength Image Data, Star Formation History Maps And Spatially Resolved Stellar Clusters, Mohamed Shameer Abdeen

Graduate Theses and Dissertations

Studying galaxy structures using different wavebands enables us to observe a varietyof intrinsic galactic features and to test the validity of underlying theories in detail. Density wave theory, originally proposed by C.C. Lin and F. Shu (Lin & Shu 1964), explains the nature of the spiral arm patterns in disk galaxies as density waves that propagate through the galactic disk. From spiral galaxies to the rings of Saturn, density wave theory has had success in providing qualitative explanations of disk dynamics. However, it is now widely believed that galactic disks are dissipative systems which raises the question of whether they …


Systematical Uncertainties In The Measurement Of A Gamma-Ray Burst’S Isotropic Equivalent Energy, Kimberly Zoldak May 2021

Systematical Uncertainties In The Measurement Of A Gamma-Ray Burst’S Isotropic Equivalent Energy, Kimberly Zoldak

Graduate Theses and Dissertations

Gamma-ray Bursts (GRBs) are the most energetic and luminous explosions in the Universe since the Big Bang, enabling them to be observed out to extremely large redshifts (z~9). Consequently, this makes them a promising cosmological standard candle candidate. Unfortunately, however, they have proven to be quite challenging to standardize. The GRB community has worked tirelessly at this task, and to date, has put forth several luminosity-distance relations, some more propitious than others. The most prevailing problem with these relations is in their sizable amount of scatter, likely due to measurement inconsistencies and errors in the variables they employ. This arises …


Transform Based Approaches For The Detection Of Astrophysical Signals, Marwan Mahfud Alkhweldi Jan 2021

Transform Based Approaches For The Detection Of Astrophysical Signals, Marwan Mahfud Alkhweldi

Graduate Theses, Dissertations, and Problem Reports

Development of new algorithms for the detection of isolated astrophysical pulses is of interest to radio astronomers. Both Fast Radio Bursts (FRBs) and several Rotating Radio Transients (RRATs) were detected through the application of a single pulse search algorithm. The conventional approach to detect astronomical pulses requires an exhaustive search for the correct dispersion measure. Its accelerated versions involve signal processing in Fourier transform space.

In this dissertation, we present several new transform-based approaches for the detection and analysis of astrophysical signals with the latest being the most effective and advanced of all. It is implemented in several steps. First, …


Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi Jan 2021

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi

Graduate Theses, Dissertations, and Problem Reports

While other films are discussed, this dissertation will focus on detailed studies of the dc and ac bulk magnetometry in a characteristic 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 (001). The dc bulk magnetometry measurements show that the sample is magnetically inhomogeneous. Temperature variation of magnetization (M vs. T) was measured in zero-field-cooled and field-cooled protocols to determine the blocking temperature TB in different applied magnetic fields. The field variation of TB is interpreted as the presence of embedded spin clusters of 1.4 nm. Moreover, the M vs. …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Measurements And Mitigation Of Scattered Light Noise In Ligo, Corey Daniel Austin Nov 2020

Measurements And Mitigation Of Scattered Light Noise In Ligo, Corey Daniel Austin

LSU Doctoral Dissertations

The Advanced LIGO (aLIGO) detectors use 1064 nm lasers to measure the tiny fluctuations in spacetime that occur when gravitational waves pass through the earth. LIGO makes use of advanced coating methods and materials to limit the amount of light that scatters from the main beam, but some amount of light does scatter. This stray light can interact with surfaces inside the interferometer that are not seismically isolated and then recombine with the main beam, introducing excess noise into the gravitational wave channel. This thesis reviews the methods for modeling scattered light with ray tracing software and analytical models, for …


Telescope Parallel Actuator Mount: Control And Testing, Samuel S. Artho-Bentz Nov 2020

Telescope Parallel Actuator Mount: Control And Testing, Samuel S. Artho-Bentz

Master's Theses

This thesis approaches the task of designing a control system for the Parallel Actuator Mount developed by Dr. John Ridgely and Mr. Garrett Gudgel. It aims to create a base framework that directly controls the telescope and can be expanded to accept external command. It incorporates lower priced components and develops more easily approachable software with great functionality. An open-loop method for velocity control is established. Developing repeatable tests is a major focus. Testing finds the control methods developed result in velocity error of less than 5% and position error of less than 1.5% despite several mechanical issues and inaccuracies. …


Topics In Gravitational Wave Physics, Aaron David Johnson Jul 2020

Topics In Gravitational Wave Physics, Aaron David Johnson

Graduate Theses and Dissertations

We begin with a brief introduction to gravitational waves. Next we look into the origin of the Chandrasekhar transformations between the different equations found by perturbing a Schwarzschild black hole. Some of the relationships turn out to be Darboux transformations. Then we turn to GW150914, the first detected black hole binary system, to see if the nonlinear memory might be detectable by current and future detectors. Finally, we develop an updated code for computing equatorial extreme mass ratio inspirals which will be open sourced as soon as it has been generalized for arbitrary inclinations.


Determining The Rotational And Orbital Velocities Of Objects In The Solar System, Mark Jones May 2020

Determining The Rotational And Orbital Velocities Of Objects In The Solar System, Mark Jones

Undergraduate Honors Theses

Astronomers have been observing the night sky for many centuries to establish a better understanding for our universe and solar system. As part of their observations, astronomers characterize celestial bodies by fundamental properties such as mass, motion, and composition in order to provide further insight about the objects in question. As technology and science have evolved, the methods for measuring these properties have become more precise and accurate. One such methodology is known as spectroscopy, and it is a significant tool for observational astronomy. In this paper, we shall describe how we used astronomical spectroscopy to determine orbital and rotational …


Physical Dispersions Of Meteor Showers Through High Precision Optical Observations, Denis Vida Apr 2020

Physical Dispersions Of Meteor Showers Through High Precision Optical Observations, Denis Vida

Electronic Thesis and Dissertation Repository

Meteoroids ejected from comets form meteoroid streams which disperse over time due to gravitational perturbations and non-gravitational forces. When stream meteoroids collide with the Earth's atmosphere, they are visible as meteors emanating from a common point-like area (radiant) in the sky. Measuring the size of meteor shower radiant areas can provide insight into stream formation and age. The tight radiant dispersion of young streams are difficult to determine due to measurement error, but if successfully measured, the dispersion could be used to constrain meteoroid ejection velocities from their parent comets. The estimated ejection velocity is an uncertain, model-dependent value with …


Calibration Transients In Ligo Detectors, Thomas Daniel Abbott Jan 2020

Calibration Transients In Ligo Detectors, Thomas Daniel Abbott

LSU Doctoral Dissertations

This dissertation describes a novel method of analyzing fluctuations in the time-dependent calibration models of the LIGO interferometers to estimate their effect on strain reconstruction for gravitational-wave detections. The time-dependence of the calibration model of each detector is tracked with a set of parameters which are continuously measured while the interferometers are operating. These parameters track slow variations in the sensing function of the detectors as well as the actuators that hold the detectors in an operational state. The time-dependent parameter data during the second observation run (O2 [November 30, 2016 16:00 UTC to August 25, 2017 22:00:00 UTC]) and …


Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack Jan 2020

Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack

LSU Doctoral Dissertations

Knowledge of stellar nuclear reaction rates is critical to understanding the cosmic origins of the abundances of elements. In order to determine these reaction rates, accurate measurements of nuclear cross sections are needed. This thesis presents the results of an experiment to directly measure the neutron capture cross sections of 70-Ge, 72-Ge, 74-Ge, and 76-Ge. These measurements were performed at the Los Alamos Neutron Science CEnter (LANSCE) using the Detector for Advanced Neutron Capture Experiments (DANCE). This is the first direct measurement for many of these isotopes across the neutron energy spectrum of 10 eV to 1 MeV using the …


High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick Nov 2019

High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick

LSU Doctoral Dissertations

In September 2015, a new era of astronomy began with the first direct detection of grav- itational waves from a binary black hole coalescence. The event was captured by the Laser Interferometer Gravitational-wave Observatory, comprised of two long-baseline interferometers, one in Livingston, LA and one in Hanford, WA. At the time of the first detection, the interferometers were part way through an upgrade to an advanced configuration and were operating with a strain sensitivity of just better than 10−23/Hz1/2 around 100Hz. The full Advanced LIGO design calls for sensitivity of a few parts in 10−24/Hz …