Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Instrumentation

Physical Dispersions Of Meteor Showers Through High Precision Optical Observations, Denis Vida Apr 2020

Physical Dispersions Of Meteor Showers Through High Precision Optical Observations, Denis Vida

Electronic Thesis and Dissertation Repository

Meteoroids ejected from comets form meteoroid streams which disperse over time due to gravitational perturbations and non-gravitational forces. When stream meteoroids collide with the Earth's atmosphere, they are visible as meteors emanating from a common point-like area (radiant) in the sky. Measuring the size of meteor shower radiant areas can provide insight into stream formation and age. The tight radiant dispersion of young streams are difficult to determine due to measurement error, but if successfully measured, the dispersion could be used to constrain meteoroid ejection velocities from their parent comets. The estimated ejection velocity is an uncertain, model-dependent value with …


Data Mining By Grid Computing In The Search For Extrasolar Planets, Oisin Creaner [Thesis] Jan 2017

Data Mining By Grid Computing In The Search For Extrasolar Planets, Oisin Creaner [Thesis]

Doctoral

A system is presented here to provide improved precision in ensemble differential photometry. This is achieved by using the power of grid computing to analyse astronomical catalogues. This produces new catalogues of optimised pointings for each star, which maximise the number and quality of reference stars available. Astronomical phenomena such as exoplanet transits and small-scale structure within quasars may be observed by means of millimagnitude photometric variability on the timescale of minutes to hours. Because of atmospheric distortion, ground-based observations of these phenomena require the use of differential photometry whereby the target is compared with one or more reference stars. …


Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali Aug 2013

Analyzing The Performance Of The Sofia Infrared Telescope, Sarah M. Bass, Jeffrey Van Cleve, Zaheer Ali

STAR Program Research Presentations

The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne near-space observatory onboard a modified Boeing 747-SP aircraft, which flies at altitudes of 45,000 ft., above 99% of the Earth’s water vapor. SOFIA contains an effective 2.5 m infrared (IR) telescope that has a dichroic tertiary mirror, reflecting IR and visible wavelengths to the science instrument (SI) and focal plane imager (FPI), respectively. To date, seven different SIs have been designed to cover a wide range of wavelengths and spectral resolutions. Since the telescope operates in the infrared, different techniques, including chopping, nodding, and dithering, are used to reduce the …


Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach Aug 2013

Flitecam Data Process Validation, Jesse K. Tsai, Sachindev S. Shenoy, Brent Cedric Nicklas, Zaheer Ali, William T. Reach

STAR Program Research Presentations

FLITECAM Data Processing Validation

Many of the challenges that come from working with astronomical imaging arise from the reduction of raw data into scientifically meaningful data. First Light Infrared Test CAMera (FLITECAM) is an infrared camera operating in the 1.0–5.5 μm waveband on board SOFIA (Stratospheric Observatory For Infrared Astronomy). Due to the significant noise from the atmosphere and the camera itself, astronomers have developed many methods to reduce the effects of atmospheric and instrumental emission. The FLITECAM Data Reduction Program (FDRP) is a program, developed at SOFIA Science Center, subtracts darks, removes flats, and dithers images.

This project contains …


Image Processing Algorithms For Improving Planetary Exploration And Understanding, Ali Pouryazdanpanah Apr 2013

Image Processing Algorithms For Improving Planetary Exploration And Understanding, Ali Pouryazdanpanah

College of Engineering: Graduate Celebration Programs

  • To design a fully automated tool-set that allows to detect and extract the sky region in planetary images.
  • To develop the new method for rock segmentation in planetary stereo images.
  • To develop the new method for shadow detection in planetary images


Why Is An Einstein Ring Blue?, Jonathan Blackledge Jan 2011

Why Is An Einstein Ring Blue?, Jonathan Blackledge

Articles

Albert Einstein predicted the existence of `Einstein rings' as a consequence of his general theory of relativity. The phenomenon is a direct result of the idea that if a mass warps space-time then light (and other electromagnetic waves) will be `lensed' by the strong gravitational field produced by a large cosmological body such as a galaxy. Since 1998, when the first complete Einstein ring was observed, many more complete or partially complete Einstein rings have been observed in the radio and infrared spectra, for example, and by the Hubble Space Telescope in the optical spectrum. However, in the latter case, …