Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Instrumentation

Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack Jan 2020

Stellar Nucleosynthesis: Direct Measurement Of The Neutron-Capture Cross Sections Of Stable Germanium Isotopes And Design Of A Next Generation Ion Trap For The Study Of Beta-Delayed Neutron Emission, Alexander Laminack

LSU Doctoral Dissertations

Knowledge of stellar nuclear reaction rates is critical to understanding the cosmic origins of the abundances of elements. In order to determine these reaction rates, accurate measurements of nuclear cross sections are needed. This thesis presents the results of an experiment to directly measure the neutron capture cross sections of 70-Ge, 72-Ge, 74-Ge, and 76-Ge. These measurements were performed at the Los Alamos Neutron Science CEnter (LANSCE) using the Detector for Advanced Neutron Capture Experiments (DANCE). This is the first direct measurement for many of these isotopes across the neutron energy spectrum of 10 eV to 1 MeV using the …


Using An Astrophysical Model To Characterize Nuclear Dust, Anita N. Dunsmore Mar 2018

Using An Astrophysical Model To Characterize Nuclear Dust, Anita N. Dunsmore

Theses and Dissertations

Dust clouds resulting from nuclear explosions are complex phenomena, and knowledge on how they form is lacking. Noting the similarities between supernovae and nuclear explosions led to the concept of modeling a nuclear dust cloud using a supernova simulation. MOCASSIN uses a Monte Carlo approach to model photons traveling through a dust cloud, allowing the cloud's characteristics to be discovered by comparing an observed spectrum to a calculated one and then changing input values to make the spectra match. Data files describing two nuclear fireballs of varying yields were created and analyzed using MOCASSIN, but yielded zero energy spectra. After …


Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman Jan 2018

Magnetic Field Design To Reduce Systematic Effects In Neutron Electric Dipole Moment Measurements, James Ryan Dadisman

Theses and Dissertations--Physics and Astronomy

Charge-Conjugation (C) and Charge-Conjugation-Parity (CP) Violation is one of the three Sakharov conditions to explain via baryogenesis the observed baryon asymmetry of the universe (BAU). The Standard Model of particle physics (SM) contains sources of CP violation, but cannot explain the BAU. This motivates searches for new physics beyond the standard model (BSM) which address the Sakharov criteria, including high-precision searches for new sources of CPV in systems for which the SM contribution is small, but larger effects may be present in BSM theories. A promising example is the search for the electric dipole moment of the neutron (nEDM), which …


Remote Neutron Spectroscopy On Mars, Christopher Gayle Tate May 2017

Remote Neutron Spectroscopy On Mars, Christopher Gayle Tate

Doctoral Dissertations

Remote neutron spectroscopy is an important technique in planetary science that allows for classification of the amount of light elements in a planetary regolith. It is especially suited for studying hydrogen abundances and elements with high thermal neutron absorption cross sections in the top ~1 meter of regolith. The Mars Science Laboratory rover Curiosity carries the first rover based neutron spectrometer Dynamic Albedo of Neutrons (DAN) in Gale crater, Mars. As the DAN instrument operates in passive mode, it is sensitive to neutrons produced through Galactic Cosmic Ray interactions and neutrons generated by the rover's Multi-Mission Radioisotope Thermoelectric Generator. In …


Design And Fabrication Of Liquid Scintillator Counter, Andrea Calderon Saucedo, John L. Orrell Aug 2015

Design And Fabrication Of Liquid Scintillator Counter, Andrea Calderon Saucedo, John L. Orrell

STAR Program Research Presentations

Pacific Northwest National Laboratory (PNNL) is currently developing an ultra-low background liquid scintillator counter (ULB LSC) in the shallow underground laboratory. At a depth of 35-meters water-equivalent, the underground laboratory has a multi-layered shielding to keep out cosmic-ray induced background. The ULB LSC, which is located in a clean room facility, is a multi-layered design made up of various materials, including plastic scintillator veto panels, borated polyethylene, lead and copper. These layers help lower the contributions of the terrestrial background and intrinsic background, resulting from the impurities present in the materials, to the overall background count rate observed by the …


The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn Aug 2013

The Study Of Nuclear Structure Of Neutron-Rich 81ge And Its Contribution In The R-Process Via The Neutron Transfer Reaction 80ge(D,P), Sunghoon Ahn

Doctoral Dissertations

The study of low-lying levels of nuclei near closed shells not only elucidates the evolution of nuclear shell structure far from stability, but also affects estimates of heavy element nucleosynthesis in supernova explosions. Especially, the properties of the low-lying levels in 81Ge[Germanium 81] are important because the sensitivity study of the r-process pointed out that the properties of the nucleus can affect the final bundance pattern. Also, the spins and parities measurements of the states are essential to understand the shape coexistence in odd-mass N = 49 isotones.

This work describes the study of the odd-mass N = …