Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Instrumentation

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez Dec 2021

On The Mobility Of Small Aperture Telescopes For Initial Orbit Determination And Apparent Magnitude Derivation Of Low Earth Satellites, Jonathan Ian Hernandez

Master's Theses

Maintaining Space Domain Awareness (SDA) of satellites in low Earth orbit (LEO) requires effective methods of tracking and characterization. Optical measurements of these objects are generally sparse due to limited access intervals and high angular rates. Light pollution and geographic obstructions may also preclude consistent observations. However, a mobile small aperture telescope grants the ability to minimize such environmental effects, thereby increasing capture likelihoods for objects within this regime. By enhancing LEO satellite visibility in this way, extensive orbital and visual data are obtainable.

An 8-inch Meade LX200GPS telescope equipped with a Lumenera SKYnyx2-0M CCD camera comprises the system that …


Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii Dec 2020

Investigation On The Use Of Small Aperture Telescopes For Leo Satellite Orbit Determination, Luis R. Curiel Iii

Master's Theses

The following thesis regards the use of small aperture telescopes for space domain awareness efforts. The rapidly populating space domain was motivation for the development of a new operation scheme to conduct space domain awareness feasibility studies using small telescopes. Two 14-inch Schmidt-Cassegrain Telescopes at the California Polytechnic State University and the Air Force Research Lab in Kirtland AFB, NM, in conjunction with a dedicated CCD camera and a commercial DSLR camera, were utilized to conduct optical observations on satellites in Earth orbit.

Satellites were imaged during August 2019, and from January 2020 to March 2020, resulting in the collection …


Telescope Parallel Actuator Mount: Control And Testing, Samuel S. Artho-Bentz Nov 2020

Telescope Parallel Actuator Mount: Control And Testing, Samuel S. Artho-Bentz

Master's Theses

This thesis approaches the task of designing a control system for the Parallel Actuator Mount developed by Dr. John Ridgely and Mr. Garrett Gudgel. It aims to create a base framework that directly controls the telescope and can be expanded to accept external command. It incorporates lower priced components and develops more easily approachable software with great functionality. An open-loop method for velocity control is established. Developing repeatable tests is a major focus. Testing finds the control methods developed result in velocity error of less than 5% and position error of less than 1.5% despite several mechanical issues and inaccuracies. …


A Rotating Aperture Mask For Small Telescopes, Edward L. Foley Nov 2019

A Rotating Aperture Mask For Small Telescopes, Edward L. Foley

Master's Theses

Observing the dynamic interaction between stars and their close stellar neighbors is key to establishing the stars’ orbits, masses, and other properties. Our ability to visually discriminate nearby stars is limited by the power of our telescopes, posing a challenge to astronomers at small observatories that contribute to binary star surveys. Masks placed at the telescope aperture promise to augment the resolving power of telescopes of all sizes, but many of these masks must be manually and repetitively reoriented about the optical axis to achieve their full benefits. This paper introduces a design concept for a mask rotation mechanism that …


Alternative Mission Concepts For The Exploration Of Outer Planets Using Small Satellite Swarms, Andrew Gene Blocher Nov 2017

Alternative Mission Concepts For The Exploration Of Outer Planets Using Small Satellite Swarms, Andrew Gene Blocher

Master's Theses

Interplanetary space exploration has thus far consisted of single, expensive spacecraft missions. Mission costs are particularly high on missions to the outer planets and while invaluable, finite budgets limit our ability to perform extensive and frequent investigations of the planets. Planetary systems such as Jupiter and Saturn provide extremely complex exploration environments with numerous targets of interest. Exploring these targets in addition to the main planet requires multiple fly-bys and long mission timelines. In LEO, CubeSats have changed the exploration paradigm, offering a fast and low cost alternative to traditional space vehicles. This new mission development philosophy has the potential …


Thermal Evolution Of Moon, Arshdeep Singh Gill Mar 2017

Thermal Evolution Of Moon, Arshdeep Singh Gill

Master's Theses

In August, 2014 three experiments were conducted using infrared systems deployed at White Mountain Research center, CA. The data was acquired for the whole month of August. Teams of 3-4 students from Cal Poly San Luis Obispo and UC Santa Barbara were stationed at the research center for 2-3 days to operate the equipment. The three experiments were:(1) creating spatial-temporal time series of lunar surface temperatures;(2) identifying atmospheric meteor trails;(3) search for meteor impacts on the Moon surface. Out of the three this thesis focusses on experiment 1 and the results from this experiment could also help with the other …


Design And Fabrication Of Liquid Scintillator Counter, Andrea Calderon Saucedo, John L. Orrell Aug 2015

Design And Fabrication Of Liquid Scintillator Counter, Andrea Calderon Saucedo, John L. Orrell

STAR Program Research Presentations

Pacific Northwest National Laboratory (PNNL) is currently developing an ultra-low background liquid scintillator counter (ULB LSC) in the shallow underground laboratory. At a depth of 35-meters water-equivalent, the underground laboratory has a multi-layered shielding to keep out cosmic-ray induced background. The ULB LSC, which is located in a clean room facility, is a multi-layered design made up of various materials, including plastic scintillator veto panels, borated polyethylene, lead and copper. These layers help lower the contributions of the terrestrial background and intrinsic background, resulting from the impurities present in the materials, to the overall background count rate observed by the …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …


Tools And Methods To Optimize The Analysis Of Telescopic Performance Metrics On Sofia, Steven R. Wilson, Holger Jakob, Stefan Teufel, Zaheer Ali, Jeffrey Van Cleve, Brian Eney, Greg Perryman Aug 2013

Tools And Methods To Optimize The Analysis Of Telescopic Performance Metrics On Sofia, Steven R. Wilson, Holger Jakob, Stefan Teufel, Zaheer Ali, Jeffrey Van Cleve, Brian Eney, Greg Perryman

STAR Program Research Presentations

SOFIA is an infrared observatory mounted on a modified 747 engineered to do infrared astronomy at 45000 feet. The telescope equipment contains a number of sensors and stabilizers that allow the telescope to capture images while mounted in a moving plane. We have developed methods to analyze the performance of the telescope assembly that will help improve the stabilization and image capturing performance of the observatory. Here we present reusable methods to analyze telescope performance data that will enable improvements in the quality of the scientific data that is produced by the SOFIA. This poster focuses on the multi-flight performance …


Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson Aug 2012

Telescope Assembly Alignment Simulator Performance Optimization, Joshua G. Thompson, Brian Eney, Zaheer Ali, Bob Thompson

STAR Program Research Presentations

The Telescope Assembly Alignment Simulator (TAAS) calibrates scientific instruments (SI’s) that are installed on the Stratospheric Observatory For Infrared Astronomy (SOFIA). An SI’s accuracy is directly dependent on the consistent performance of the TAAS, which has never been fully characterized. After designing various thermal and optical experiments to identify the current unknowns of TAAS, we now have a far better grasp on how the equipment behaves.