Open Access. Powered by Scholars. Published by Universities.®

Instrumentation Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 20 of 20

Full-Text Articles in Instrumentation

Tidal Locking And The Gravitational Fold Catastrophe, Andrea Ferroglia, Miguel C. N. Fiolhais Nov 2020

Tidal Locking And The Gravitational Fold Catastrophe, Andrea Ferroglia, Miguel C. N. Fiolhais

Publications and Research

The purpose of this work is to study the phenomenon of tidal locking in a pedagogical framework by analyzing the effective gravitational potential of a two-body system with two spinning objects. It is shown that the effective potential of such a system is an example of a fold catastrophe. In fact, the existence of a local minimum and saddle point, corresponding to tidally locked circular orbits, is regulated by a single dimensionless control parameter that depends on the properties of the two bodies and on the total angular momentum of the system. The method described in this work results in …


A Search For Brief Optical Flashes Associated With The Seti Target Kic 8462852, P. T. Reynolds, Et Al Feb 2016

A Search For Brief Optical Flashes Associated With The Seti Target Kic 8462852, P. T. Reynolds, Et Al

Physical Sciences Publications

The F-type star KIC 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately , is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.


Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine Aug 2014

Laser Frequency Stabilization For Lisa, Andrew B. Parker, Andrew J. Sutton, Glenn De Vine

STAR Program Research Presentations

This research focuses on laser ranging developments for LISA (Laser Interferometer Space Antenna), a planned NASA-ESA gravitational wave detector in space. LISA will utilize precision laser interferometry to track the changes in separation between three satellites orbiting 5 million kilometers apart. Specifically, our goal is to investigate options for laser frequency stabilization. Previous research has shown that an optical cavity system can meet LISA's stability requirements, but these units are large and heavy, adding cost to the implementation. A heterodyne Mach-Zehnder interferometer could be integrated onto LISA’s existing optical bench, greatly reducing the weight, provided the interferometer meets the stability …


Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter Aug 2014

Environmental Testing Of Lasers For Jpl's Cold Atom Laboratory, Carey L. Baxter

STAR Program Research Presentations

NASA’s Cold Atom Lab (CAL) is a multi-user facility designed to study ultra-cold quantum gases in the microgravity environment of the International Space Station (ISS). One of the main goals of CAL is to explore the unknown territory of extremely low temperatures—possibly as low as the picokelvin range!—where new and fascinating quantum phenomena can be observed. At such temperatures matter stops behaving as particles and instead becomes macroscopic matter waves. CAL will be remotely controlled to perform a multitude of experiments and is scheduled to launch in 2016. In order to anticipate problems that might occur during and post-launch, including …


Calculating Time Lags From Unevenly Sampled Light Curves, A. Zoghbi, C. Reynolds, E. M. Cackett Nov 2013

Calculating Time Lags From Unevenly Sampled Light Curves, A. Zoghbi, C. Reynolds, E. M. Cackett

Physics and Astronomy Faculty Research Publications

Timing techniques are powerful tools to study dynamical astrophysical phenomena. In the X-ray band, they offer the potential of probing accretion physics down to the event horizon. Recent work has used frequency- and energy-dependent time lags as tools for studying relativistic reverberation around the black holes in several Seyfert galaxies. This was achieved due to the evenly sampled light curves obtained using XMM-Newton. Continuously sampled data are, however, not always available and standard Fourier techniques are not applicable. Here, building on the work of Miller et al., we discuss and use a maximum likelihood method to obtain frequency-dependent lags that …


Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt Jan 2013

Bayesian Inference Of Polarized Cosmic Microwave Background Power Spectra From Interferometric Data, Ata Karakci, P. M. Sutter, Le Zhang, Emory F. Bunn, Andrei Korotkov, Peter Timbie, Gregory S. Tucker, Benjamin D. Wandelt

Physics Faculty Publications

Detection of B-mode polarization of the cosmic microwave background (CMB) radiation is one of the frontiers of observational cosmology. Because they are an order of magnitude fainter than E-modes, it is quite a challenge to detect B-modes. Having more manageable systematics, interferometers prove to have a substantial advantage over imagers in detecting such faint signals. Here, we present a method for Bayesian inference of power spectra and signal reconstruction from interferometric data of the CMB polarization signal by using the technique of Gibbs sampling. We demonstrate the validity of the method in the flat-sky approximation for a simulation of an …


Findchirp: An Algorithm For Detection Of Gravitational Waves From Inspiraling Compact Binaries, Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, Jolien D E Creighton Jun 2012

Findchirp: An Algorithm For Detection Of Gravitational Waves From Inspiraling Compact Binaries, Bruce Allen, Warren G. Anderson, Patrick R. Brady, Duncan A. Brown, Jolien D E Creighton

Physics - All Scholarship

Matched-filter searches for gravitational waves from coalescing compact binaries by the LIGO Scientific Collaboration use the FINDCHIRP algorithm: an implementation of the optimal filter with innovations to account for unknown signal parameters and to improve performance on detector data that has nonstationary and non-Gaussian artifacts. We provide details on the FINDCHIRP algorithm as used in the search for subsolar mass binaries, binary neutron stars, neutron star-black hole binaries, and binary black holes.


Identifying A New Intermediate Polar Using Xmm-Newton And Integral, Matthew J. Middleton, Edward M. Cackett, Craig Shaw, Gavin Ramsay, Timothy P. Roberts, Peter J. Wheatley Jan 2012

Identifying A New Intermediate Polar Using Xmm-Newton And Integral, Matthew J. Middleton, Edward M. Cackett, Craig Shaw, Gavin Ramsay, Timothy P. Roberts, Peter J. Wheatley

Physics and Astronomy Faculty Research Publications

The bright X-ray source 2XMMi J180438.7-145647 is fortunate to have long baseline observations in INTEGRAL that complement observations taken by other missions. Optical spectroscopy of this object has suggested a distance of ˜7 kpc and an identification with a low-mass X-ray binary. We instead use the X-ray data from 0.3 to 40 keV to identify the source as a bright intermediate polar (IP) with an estimate for the white dwarf mass of ˜0.60 M. This identification is supported by the presence of an iron triplet, the component lines of which are some of the strongest seen in IPs, …


Efficient Decomposition Of Cosmic Microwave Background Polarization Maps Into Pure E, Pure B, And Ambiguous Components., Emory F. Bunn Apr 2011

Efficient Decomposition Of Cosmic Microwave Background Polarization Maps Into Pure E, Pure B, And Ambiguous Components., Emory F. Bunn

Physics Faculty Publications

Separation of the B component of a cosmic microwave background (CMB) polarization map from the much larger E component is an essential step in CMB polarimetry. For a map with incomplete sky coverage, this separation is necessarily hampered by the presence of ambiguous modes which could be either E or B modes. I present an efficient pixel-space algorithm for removing the ambiguous modes and separating the map into pure E and B components. The method, which works for arbitrary geometries, does not involve generating a complete basis of such modes and scales the cube of the number of pixels on …


A New Pulsar Instrumentation At The Allen Telescope Array And The Nancay Radio Telescope, G. Desvignes, William C. Barott, I. Cognard, P. Lespagnol, G. Theureau Jan 2011

A New Pulsar Instrumentation At The Allen Telescope Array And The Nancay Radio Telescope, G. Desvignes, William C. Barott, I. Cognard, P. Lespagnol, G. Theureau

Publications

In the prospect of the gravitational wave background detection with high precision pulsar timing, we recently installed a new coherent dedispersion backend at the Allen Telescope Array (ATA) and the Nançay Radio Telescope (NRT).


On Relativistic Disk Spectroscopy In Compact Objects With X-Ray Ccd Cameras, J. M. Miller, A. D'Aì, M. W. Bautz, S. Bhattacharyya, D. N. Burrows, E. M. Cackett, A. C. Fabian, M. J. Freyberg, F. Haberl, J. Kennea, M. A. Nowak, R. C. Reis, T. E. Strohmayer, M. Tsujimoto Dec 2010

On Relativistic Disk Spectroscopy In Compact Objects With X-Ray Ccd Cameras, J. M. Miller, A. D'Aì, M. W. Bautz, S. Bhattacharyya, D. N. Burrows, E. M. Cackett, A. C. Fabian, M. J. Freyberg, F. Haberl, J. Kennea, M. A. Nowak, R. C. Reis, T. E. Strohmayer, M. Tsujimoto

Physics and Astronomy Faculty Research Publications

X-ray charge-coupled devices (CCDs) are the workhorse detectors of modern X-ray astronomy. Typically covering the 0.3-10.0 keV energy range, CCDs are able to detect photoelectric absorption edges and K shell lines from most abundant metals. New CCDs also offer resolutions of 30-50 (E/ΔE), which is sufficient to detect lines in hot plasmas and to resolve many lines shaped by dynamical processes in accretion flows. The spectral capabilities of X-ray CCDs have been particularly important in detecting relativistic emission lines from the inner disks around accreting neutron stars and black holes. One drawback of X-ray CCDs is that spectra can be …


Bandwidth In Bolometric Interferometry, R. Charlassier, Emory F. Bunn, J.-Ch. Hamilton, J. Kaplan, S. Malu May 2010

Bandwidth In Bolometric Interferometry, R. Charlassier, Emory F. Bunn, J.-Ch. Hamilton, J. Kaplan, S. Malu

Physics Faculty Publications

Context. Bolometric interferometry is a promising new technology with potential applications to the detection of B-mode polarization fluctuations of the cosmic microwave background (CMB). A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers to be competitive with imaging experiments. A crucial concern is that interferometers are assumed to be significantly affected by a spoiling effect known as bandwidth smearing.

Aims. We investigate how the bandwidth modifies the work principle of a bolometric interferometer and affects its sensitivity to the CMB angular power spectra.

Methods. We obtain analytical expressions for …


Phase Shift Sequences For An Adding Interferometer, Peter Hyland, Brent Follin, Emory F. Bunn Jan 2009

Phase Shift Sequences For An Adding Interferometer, Peter Hyland, Brent Follin, Emory F. Bunn

Physics Faculty Publications

Cosmic microwave background (CMB) polarimetry has the potential to provide revolutionary advances in cosmology. Future experiments to detect the very weak B-mode signal in CMB polarization maps will require unprecedented sensitivity and control of systematic errors. Bolometric interferometry may provide a way to achieve these goals. In a bolometric interferometer (or other adding interferometer), phase shift sequences are applied to the inputs in order to recover the visibilities. Noise is minimized when the phase shift sequences corresponding to all visibilities are orthogonal. We present a systematic method for finding sequences that produce this orthogonality, approximately minimizing both the length of …


Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon Dec 2008

Contamination Cannot Explain The Lack Of Large-Scale Power In The Cosmic Microwave Background Radiation, Emory F. Bunn, Austin Bourdon

Physics Faculty Publications

Several anomalies appear to be present in the large-angle cosmic microwave background (CMB) anisotropy maps of the Wilkinson Microwave Anisotropy Probe. One of these is a lack of large-scale power. Because the data otherwise match standard models extremely well, it is natural to consider perturbations of the standard model as possible explanations. We show that, as long as the source of the perturbation is statistically independent of the source of the primary CMB anisotropy, no such model can explain this large-scale power deficit. On the contrary, any such perturbation always reduces the probability of obtaining any given low value of …


Constraining F(R) Gravity As A Scalar-Tensor Theory, Thomas Faulkner, Max Tegmark, Emory F. Bunn, Yi Mao Sep 2007

Constraining F(R) Gravity As A Scalar-Tensor Theory, Thomas Faulkner, Max Tegmark, Emory F. Bunn, Yi Mao

Physics Faculty Publications

We search for viable f(R) theories of gravity, making use of the equivalence between such theories and scalar-tensor gravity. We find that models can be made consistent with solar system constraints either by giving the scalar a high mass or by exploiting the so-called chameleon effect. However, in both cases, it appears likely that any late-time cosmic acceleration will be observationally indistinguishable from acceleration caused by a cosmological constant. We also explore further observational constraints from, e.g., big bang nucleosynthesis and inflation.


Directionality In The Wilkinson Microwave Anisotropy Probe Polarization Data, D. Hanson, Douglas Scott, Emory F. Bunn Jul 2007

Directionality In The Wilkinson Microwave Anisotropy Probe Polarization Data, D. Hanson, Douglas Scott, Emory F. Bunn

Physics Faculty Publications

Polarization is the next frontier of cosmic microwave background analysis, but its signal is dominated over much of the sky by foregrounds which must be carefully removed. To determine the efficacy of this cleaning, it is necessary to have sensitive tests for residual foreground contamination in polarization sky maps. The dominant Galactic foregrounds introduce a large-scale anisotropy on to the sky, so it makes sense to use a statistic sensitive to overall directionality for this purpose. Here, we adapt the rapidly computable D statistic of Bunn and Scott to polarization data, and demonstrate its utility as a foreground monitor by …


Systematic Errors In Cosmic Microwave Background Interferometry, Emory F. Bunn Apr 2007

Systematic Errors In Cosmic Microwave Background Interferometry, Emory F. Bunn

Physics Faculty Publications

Cosmic microwave background (CMB) polarization observations will require superb control of systematic errors in order to achieve their full scientific potential, particularly in the case of attempts to detect the B modes that may provide a window on inflation. Interferometry may be a promising way to achieve these goals. This paper presents a formalism for characterizing the effects of a variety of systematic errors on interferometric CMB polarization observations, with particular emphasis on estimates of the B-mode power spectrum. The most severe errors are those that couple the temperature anisotropy signal to polarization; such errors include cross talk within …


Mosaicking With Cosmic Microwave Background Interferometers, Emory F. Bunn, Martin White Jan 2007

Mosaicking With Cosmic Microwave Background Interferometers, Emory F. Bunn, Martin White

Physics Faculty Publications

Measurements of cosmic microwave background (CMB) anisotropies by interferometers offer several advantages over single-dish observations. The formalism for analyzing interferometer CMB data is well developed in the flat-sky approximation, which is valid for small fields of view. As the area of sky is increased to obtain finer spectral resolution, this approximation needs to be relaxed. We extend the formalism for CMB interferometry, including both temperature and polarization, to mosaics of observations covering arbitrarily large areas of the sky, with each individual pointing lying within the flat-sky approximation. We present a method for computing the correlation between visibilities with arbitrary pointing …


Probing The Universe On Gigaparsec Scales With Remote Cosmic Microwave Background Quadrupole Measurements, Emory F. Bunn Jun 2006

Probing The Universe On Gigaparsec Scales With Remote Cosmic Microwave Background Quadrupole Measurements, Emory F. Bunn

Physics Faculty Publications

Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces a polarization signal proportional to the CMB quadrupole anisotropy at the cluster’s location and lookback time. A survey of such remote quadrupole measurements provides information about large-scale cosmological perturbations. This paper presents a formalism for calculating the correlation function of remote quadrupole measurements in spherical harmonic space. The number of independent modes probed by both single-redshift and volume-limited surveys is presented, along with the length scales probed by these modes. In a remote quadrupole survey sparsely covering a large area of sky, the largest-scale modes probe the same-length scales …


E/B Decomposition Of Finite Pixelized Cmb Maps, Emory F. Bunn, Matias Zaldarriaga, Max Tegmark, Angelica De Oliveira-Costa Jan 2003

E/B Decomposition Of Finite Pixelized Cmb Maps, Emory F. Bunn, Matias Zaldarriaga, Max Tegmark, Angelica De Oliveira-Costa

Physics Faculty Publications

Separation of the E and B components of a microwave background polarization map or a weak lensing map is an essential step in extracting science from it, but when the map covers only part of the sky and/or is pixelized, this decomposition cannot be done perfectly. We present a method for decomposing an arbitrary sky map into a sum of three orthogonal components that we term ‘‘pure E,’’ ‘‘pure B,’’ and ‘‘ambiguous.’’ The fluctuations in the pure E and B maps are due only to the E and B power spectra, respectively, whereas the source of those in …