Open Access. Powered by Scholars. Published by Universities.®

Non-linear Dynamics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Non-linear Dynamics

Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam Apr 2018

Iterative Methods To Solve Systems Of Nonlinear Algebraic Equations, Md Shafiful Alam

Masters Theses & Specialist Projects

Iterative methods have been a very important area of study in numerical analysis since the inception of computational science. Their use ranges from solving algebraic equations to systems of differential equations and many more. In this thesis, we discuss several iterative methods, however our main focus is Newton's method. We present a detailed study of Newton's method, its order of convergence and the asymptotic error constant when solving problems of various types as well as analyze several pitfalls, which can affect convergence. We also pose some necessary and sufficient conditions on the function f for higher order of convergence. Different …


Long-Wave Model For Strongly Anisotropic Growth Of A Crystal Step, Mikhail Khenner Aug 2013

Long-Wave Model For Strongly Anisotropic Growth Of A Crystal Step, Mikhail Khenner

Mathematics Faculty Publications

A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the “one-sided” model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed …


Long-Wave Model For Strongly Anisotropic Growth Of A Crystal Step, Mikhail Khenner Aug 2013

Long-Wave Model For Strongly Anisotropic Growth Of A Crystal Step, Mikhail Khenner

Mikhail Khenner

A continuum model for the dynamics of a single step with the strongly anisotropic line energy is formulated and analyzed. The step grows by attachment of adatoms from the lower terrace, onto which atoms adsorb from a vapor phase or from a molecular beam, and the desorption is nonnegligible (the “one-sided” model). Via a multiscale expansion, we derived a long-wave, strongly nonlinear, and strongly anisotropic evolution PDE for the step profile. Written in terms of the step slope, the PDE can be represented in a form similar to a convective Cahn-Hilliard equation. We performed the linear stability analysis and computed …