Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Water

2013

Australian Institute for Innovative Materials - Papers

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

A Light-Assisted, Polymeric Water Oxidation Catalyst That Selectively Oxidizes Seawater With A Low Onset Potential, Jun Chen, Pawel W. Wagner, Lei Tong, Danijel Boskovic, Weimin Zhang, David L. Officer, Gordon G. Wallace, Gerhard F. Swiegers Jan 2013

A Light-Assisted, Polymeric Water Oxidation Catalyst That Selectively Oxidizes Seawater With A Low Onset Potential, Jun Chen, Pawel W. Wagner, Lei Tong, Danijel Boskovic, Weimin Zhang, David L. Officer, Gordon G. Wallace, Gerhard F. Swiegers

Australian Institute for Innovative Materials - Papers

Vapour phase polymerisation (vpp) of PEDOT to incorporate high levels of a sulphonated manganese porphyrin yields a vivid green conducting polymer that, under illumination, catalyzes selective oxidation of water from seawater from ca. 0.40 V (vs. NHE; Pt counter electrode) without observable chlorine formation. This onset potential is comparable to that of certain metal oxide semiconductors that achieve higher photocurrents but are not capable of selectively oxidising the water in seawater.


Highly Water-Soluble Magnetic Iron Oxide (Fe3o4) Nanoparticles For Drug Delivery: Enhanced In Vitro Therapeutic Efficacy Of Doxorubicin And Mion Conjugates, Muhammad Irfan Majeed, Qunwei Lu, Wei Yan, Zhen Li, Irshad Hussain, Muhammad Nawaz Tahir, Wolfgang Tremel, Bien Tan Jan 2013

Highly Water-Soluble Magnetic Iron Oxide (Fe3o4) Nanoparticles For Drug Delivery: Enhanced In Vitro Therapeutic Efficacy Of Doxorubicin And Mion Conjugates, Muhammad Irfan Majeed, Qunwei Lu, Wei Yan, Zhen Li, Irshad Hussain, Muhammad Nawaz Tahir, Wolfgang Tremel, Bien Tan

Australian Institute for Innovative Materials - Papers

We report a simple one step protocol for the preparation of fairly monodisperse and highly water-soluble magnetic iron oxide nanoparticles (MIONs) through a co-precipitation method using a novel multifunctional, biocompatible and water-soluble polymer ligand dodecanethiol-polymethacrylic acid (DDT-PMAA). DDT-PMAA owing to its several intrinsic properties, not only efficiently controls the size of the MIONs but also gives them excellent water solubility, long time stability against aggregation and oxidation, biocompatibility and multifunctional surface rich in thioether and carboxylic acid groups. The molecular weight and concentration of the polymer ligand were optimized to produce ultrasmall (4.6 +/- 0.7 nm) MIONs with high magnetization …


Collective Librations Of Water Molecules In The Crystal Lattice Of Rubidium Bromide: Experiment And Simulation, L M. Lepodise, J Horvat, Roger A. Lewis Jan 2013

Collective Librations Of Water Molecules In The Crystal Lattice Of Rubidium Bromide: Experiment And Simulation, L M. Lepodise, J Horvat, Roger A. Lewis

Australian Institute for Innovative Materials - Papers

Terahertz spectroscopy of RbBr reveals four prominent absorption lines at room temperature and a further 15 lines at 10 K. Via density-functional-theory (DFT) numerical modelling using the PBE0 hybrid GGA functional, all the absorptions are identified as correlated librations of water molecules in the RbBr lattice. Each libration mode is a combination of rocking, wagging and twisting motions of the water molecules. The number of libration lines and numerical modelling show that the C2v symmetry of water in RbBr is broken. Our modelling shows that the distribution of libration amplitudes and phases for different water molecules in the RbBr unit …