Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Statistical mechanics

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 52

Full-Text Articles in Physical Sciences and Mathematics

Prescribing The Q¯ ′ -Curvature On Pseudo-Einstein Cr 3-Manifolds, Ali Maalaoui Mar 2023

Prescribing The Q¯ ′ -Curvature On Pseudo-Einstein Cr 3-Manifolds, Ali Maalaoui

Mathematics

In this paper we study the problem of prescribing the Q ¯ ′ -curvature on embeddable pseudo-Einstein CR 3-manifolds. In the first stage we study the problem in the compact setting and we show that under natural assumptions, one can prescribe any positive (resp. negative) CR pluriharmonic function, if ∫ M Q ′ d v θ > 0 (resp. ∫ M Q ′ d v θ < 0 ). In the second stage, we study the problem in the non-compact setting of the Heisenberg group. Under mild assumptions on the prescribed function, we prove existence of a one parameter family of solutions. In fact, we show that one can find two kinds of solutions: normal ones that satisfy an isoperimetric inequality and non-normal ones that have a biharmonic leading term.

The available download on this page is the author manuscript accepted for publication. This version has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading …


Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss Aug 2022

Direct Calculation Of Configurational Entropy: Pair Correlation Functions And Disorder, Clifton C. Sluss

Doctoral Dissertations

Techniques such as classical molecular dynamics [MD] simulation provide ready access to the thermodynamic data of model material systems. However, the calculation of the Helmholtz and Gibbs free energies remains a difficult task due to the tedious nature of extracting accurate values of the excess entropy from MD simulation data. Thermodynamic integration, a common technique for the calculation of entropy requires numerous simulations across a range of temperatures. Alternative approaches to the direct calculation of entropy based on functionals of pair correlation functions [PCF] have been developed over the years. This work builds upon the functional approach tradition by extending …


Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse Mar 2020

Fibration Symmetries Uncover The Building Blocks Of Biological Networks, Flaviano Morone, Ian Leifer, Hernán A. Makse

Publications and Research

A major ambition of systems science is to uncover the building blocks of any biological network to decipher how cellular function emerges from their interactions. Here, we introduce a graph representation of the information flow in these networks as a set of input trees, one for each node, which contains all pathways along which information can be transmitted in the network. In this representation, we find remarkable symmetries in the input trees that deconstruct the network into functional building blocks called fibers. Nodes in a fiber have isomorphic input trees and thus process equivalent dynamics and synchronize their activity. Each …


Linked-Cluster Expansions For Lattice Spin Models, Yuyi Wan Jan 2020

Linked-Cluster Expansions For Lattice Spin Models, Yuyi Wan

Honors Theses

Similar to various series expansions that are used to approximate mathematical func- tions, the linked-cluster expansion is an approximation method that allows us to approach the actual values of a very large physical system’s different physical quan- tities by systematically studying smaller systems embedded in this larger system. The main concept in linked-cluster expansion, weight, represents the additional con- tribution to a certain physical quantity by increasing the system size by one unit. These weights are used to eventually build up the result on a larger system. In our case, we focus on the partition function, a quantity that can …


An Application Of The Ising Model, Juliano A. Everett Dec 2019

An Application Of The Ising Model, Juliano A. Everett

Publications and Research

Understanding how the Ising model works,what it represents, and how it can be applied to neurology. Given that an Ising model is an Entropy model that could be representative of the firing of neurons, some assumptions of the system are made and then the process is simulated through Monte Carlo methods.


Infinite-Randomness Fixed Point Of The Quantum Superconductor-Metal Transitions In Amorphous Thin Films, Nicholas A. Lewellyn, Ilana M. Percher, J. J. Nelson, Javier Garcia-Barriocanal, Irina Volotsenko, Aviad Frydman, Thomas Vojta, Allen M. Goldman Feb 2019

Infinite-Randomness Fixed Point Of The Quantum Superconductor-Metal Transitions In Amorphous Thin Films, Nicholas A. Lewellyn, Ilana M. Percher, J. J. Nelson, Javier Garcia-Barriocanal, Irina Volotsenko, Aviad Frydman, Thomas Vojta, Allen M. Goldman

Physics Faculty Research & Creative Works

The magnetic-field-tuned quantum superconductor-insulator transitions of disordered amorphous indium oxide films are a paradigm in the study of quantum phase transitions and exhibit power-law scaling behavior. For superconducting indium oxide films with low disorder, such as the ones reported on here, the high-field state appears to be a quantum-corrected metal. Resistance data across the superconductor-metal transition in these films are shown here to obey an activated scaling form appropriate to a quantum phase transition controlled by an infinite-randomness fixed point in the universality class of the random transverse-field Ising model. Collapse of the field-dependent resistance vs temperature data is obtained …


Universality Class Of Explosive Percolation In Barabási-Albert Networks, Habib E. Islam, M. K. Hassan Jan 2019

Universality Class Of Explosive Percolation In Barabási-Albert Networks, Habib E. Islam, M. K. Hassan

Physics Faculty Publications

In this work, we study explosive percolation (EP) in Barabási-Albert (BA) network, in which nodes are born with degree k = m, for both product rule (PR) and sum rule (SR) of the Achlioptas process. For m = 1 we find that the critical point tc = 1 which is the maximum possible value of the relative link density t; Hence we cannot have access to the other phase like percolation in one dimension. However, for m > 1 we find that tc decreases with increasing m and the critical exponents ν, α, β and γ …


Some Results On A Class Of Functional Optimization Problems, David Rushing Dewhurst Jan 2018

Some Results On A Class Of Functional Optimization Problems, David Rushing Dewhurst

Graduate College Dissertations and Theses

We first describe a general class of optimization problems that describe many natu- ral, economic, and statistical phenomena. After noting the existence of a conserved quantity in a transformed coordinate system, we outline several instances of these problems in statistical physics, facility allocation, and machine learning. A dynamic description and statement of a partial inverse problem follow. When attempting to optimize the state of a system governed by the generalized equipartitioning princi- ple, it is vital to understand the nature of the governing probability distribution. We show that optimiziation for the incorrect probability distribution can have catas- trophic results, e.g., …


Student Understanding Of Taylor Series Expansions In Statistical Mechanics, Trevor I. Smith, John R. Thompson, Donald B. Mountcastle Oct 2017

Student Understanding Of Taylor Series Expansions In Statistical Mechanics, Trevor I. Smith, John R. Thompson, Donald B. Mountcastle

Trevor I. Smith

One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in …


Many-Particle Systems, 3, David Peak Aug 2017

Many-Particle Systems, 3, David Peak

Many Particles

Bare essentials of statistical mechanics

Atoms are examples of many-particle systems, but atoms are extraordinarily simpler than macroscopic systems consisting of 1020-1030 atoms. Despite their great size, many properties of macroscopic systems depend intimately on the microscopic behavior of their microscopic constituents. The proper quantum mechanical description of an N -particle system is a wavefunction that depends on 3N coordinates (3 ways of moving, in general, for every particle) and 4N quantum numbers (3 motional quantum numbers and 1 spin quantum number for every particle). (If the “particles” are molecules there might be additional quantum …


Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov Aug 2017

Thermodynamics Of Coherent Structures Near Phase Transitions, Julia M. Meyer, Ivan Christov

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phase transitions within large-scale systems may be modeled by nonlinear stochastic partial differential equations in which system dynamics are captured by appropriate potentials. Coherent structures in these systems evolve randomly through time; thus, statistical behavior of these fields is of greater interest than particular system realizations. The ability to simulate and predict phase transition behavior has many applications, from material behaviors (e.g., crystallographic phase transformations and coherent movement of granular materials) to traffic congestion. Past research focused on deriving solutions to the system probability density function (PDF), which is the ground-state wave function squared. Until recently, the extent to which …


Quantum Groups And Knot Invariants, Greg A. Hamilton Jan 2017

Quantum Groups And Knot Invariants, Greg A. Hamilton

Honors Theses

Knot theory arguably holds claim to the title of the mathematical discipline with the most unusually diverse applications. A knot can be defined topologically as an embedding of S1 in R3. Naturally, two knots are topologically equivalent if one cannot be smoothly deformed into the other. The question of whether two knots are equivalent is highly non-trivial, and so the question of knot invariants used to distinguish knots has occupied knot theorists for over a century. Knot theory has found application in statistical mechanics [1], symbolic logic and set theory [2], quantum fi theory [3], quantum computing [4], etc. …


Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris May 2016

Dynamical Mechanisms Leading To Equilibration In Two-Component Gases, Stephan De Bievre, Carlos Mejia-Monasterio, Paul Ernest Parris

Physics Faculty Research & Creative Works

Demonstrating how microscopic dynamics cause large systems to approach thermal equilibrium remains an elusive, longstanding, and actively pursued goal of statistical mechanics. We identify here a dynamical mechanism for thermalization in a general class of two-component dynamical Lorentz gases and prove that each component, even when maintained in a nonequilibrium state itself, can drive the other to a thermal state with a well-defined effective temperature.


Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram Sep 2015

Effective Microscopic Models For Sympathetic Cooling Of Atomic Gases, Roberto Onofrio, Bala Sundaram

Dartmouth Scholarship

Thermalization of a system in the presence of a heat bath has been the subject of many theoretical investigations especially in the framework of solid-state physics. In this setting, the presence of a large bandwidth for the frequency distribution of the harmonic oscillators schematizing the heat bath is crucial, as emphasized in the Caldeira-Leggett model. By contrast, ultracold gases in atomic traps oscillate at well-defined frequencies and therefore seem to lie outside the Caldeira-Leggett paradigm. We introduce interaction Hamiltonians which allow us to adapt the model to an atomic physics framework. The intrinsic nonlinearity of these models differentiates them from …


Student Understanding Of The Boltzmann Factor, Trevor I. Smith, Donald B. Mountcastle, John R. Thompson Sep 2015

Student Understanding Of The Boltzmann Factor, Trevor I. Smith, Donald B. Mountcastle, John R. Thompson

Faculty Scholarship for the College of Science & Mathematics

We present results of our investigation into student understanding of the physical significance and utility of the Boltzmann factor in several simple models. We identify various justifications, both correct and incorrect, that students use when answering written questions that require application of the Boltzmann factor. Results from written data as well as teaching interviews suggest that many students can neither recognize situations in which the Boltzmann factor is applicable nor articulate the physical significance of the Boltzmann factor as an expression for multiplicity, a fundamental quantity of statistical mechanics. The specific student difficulties seen in the written data led us …


Spatiotemporally Periodic Driven System With Long-Range Interactions, Owen Dale Myers Jan 2015

Spatiotemporally Periodic Driven System With Long-Range Interactions, Owen Dale Myers

Graduate College Dissertations and Theses

It is well known that some driven systems undergo transitions when a system parameter is changed adiabatically around a critical value. This transition can be the result of a fundamental change in the structure of the phase space, called a bifurcation. Most of these transitions are well classified in the theory of bifurcations. Among the driven systems, spatiotemporally periodic (STP) potentials are noteworthy due to the intimate coupling between their time and spatial components. A paradigmatic example of such a system is the Kapitza pendulum, which is a pendulum with an oscillating suspension point. The Kapitza pendulum has the strange …


Theoretical Investigations Of Gas Sorption And Separation In Metal-Organic Materials, Tony Pham Jan 2015

Theoretical Investigations Of Gas Sorption And Separation In Metal-Organic Materials, Tony Pham

USF Tampa Graduate Theses and Dissertations

Metal--organic frameworks (MOFs) are porous crystalline materials that are synthesized from rigid organic ligands and metal-containing clusters. They are highly tunable as a number of different structures can be made by simply changing the organic ligand and/or metal ion. MOFs are a promising class of materials for many energy-related applications, including H2 storage and CO2 capture and sequestration. Computational studies can provide insights into MOFs and the mechanism of gas sorption and separation. Theoretical studies on existing MOFs are performed to determine what structural characteristics leads to favorable gas sorption mechanisms. The results from these studies can provide …


Theoretical And Numerical Studies Of Phase Transitions And Error Thresholds In Topological Quantum Memories, Pejman Jouzdani Jan 2014

Theoretical And Numerical Studies Of Phase Transitions And Error Thresholds In Topological Quantum Memories, Pejman Jouzdani

Electronic Theses and Dissertations

This dissertation is the collection of a progressive research on the topic of topological quantum computation and information with the focus on the error threshold of the well-known models such as the unpaired Majorana, the toric code, and the planar code. We study the basics of quantum computation and quantum information, and in particular quantum error correction. Quantum error correction provides a tool for enhancing the quantum computation fidelity in the noisy environment of a real world. We begin with a brief introduction to stabilizer codes. The stabilizer formalism of the theory of quantum error correction gives a well-defined description …


Student Understanding Of Taylor Series Expansions In Statistical Mechanics, Trevor I. Smith, John R. Thompson, Donald B. Mountcastle Aug 2013

Student Understanding Of Taylor Series Expansions In Statistical Mechanics, Trevor I. Smith, John R. Thompson, Donald B. Mountcastle

Faculty Scholarship for the College of Science & Mathematics

One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in …


A Comparison Of Boltzmann And Gibbs Definitions Of Microcanonical Entropy For Small Systems, Randall B. Shirts Dec 2012

A Comparison Of Boltzmann And Gibbs Definitions Of Microcanonical Entropy For Small Systems, Randall B. Shirts

Faculty Publications

Two different definitions of entropy, S= klnW, in the microcanonical ensemble have been competing for over 100 years. The Boltzmann/Planck definition is that W is the number of states accessible to the system at its energy E (also called the surface entropy). The Gibbs/Hertz definition is that W is the number of states of the system up to the energy E (also called the volume entropy). These two definitions agree for large systems but differ by terms of order N-1 for small systems, where N is the number of particles in the system. For three analytical …


Disordered Bosons In One Dimension: From Weak- To Strong-Randomness Criticality, Fawaz Hrahsheh, Thomas Vojta Dec 2012

Disordered Bosons In One Dimension: From Weak- To Strong-Randomness Criticality, Fawaz Hrahsheh, Thomas Vojta

Physics Faculty Research & Creative Works

We investigate the superfluid-insulator quantum phase transition of one-dimensional bosons with off-diagonal disorder by means of large-scale Monte Carlo simulations. For weak disorder, we find the transition to be in the same universality class as the superfluid-Mott insulator transition of the clean system. The nature of the transition changes for stronger disorder. Beyond a critical disorder strength, we find nonuniversal, disorder-dependent critical behavior. We compare our results to recent perturbative and strong-disorder renormalization group predictions. We also discuss experimental implications as well as extensions of our results to other systems.


Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos Aug 2012

Information Content Of Spontaneous Symmetry Breaking, Marcelo Gleiser, Nikitas Stamatopoulos

Dartmouth Scholarship

We propose a measure of order in the context of nonequilibrium field theory and argue that this measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of coherent low-entropy configurations, such as time-dependent or time-independent topological and nontopological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state. For a certain range of initial temperatures, spatially localized, long-lived structures known …


Everything Is Entangled, Roman V. Buniy, Stephen D. H. Hsu Jan 2012

Everything Is Entangled, Roman V. Buniy, Stephen D. H. Hsu

Mathematics, Physics, and Computer Science Faculty Articles and Research

We show that big bang cosmology implies a high degree of entanglement of particles in the universe. In fact, a typical particle is entangled with many particles far outside our horizon. However, the entanglement is spread nearly uniformly so that two randomly chosen particles are unlikely to be directly entangled with each other - the reduced density matrix describing any pair is likely to be separable.


Motor-Driven Dynamics Of Cytoskeletal Filaments In Motility Assays, Shiladitya Banerjee, M. Cristina Marchetti, Kristian Muller-Nedebock Jun 2011

Motor-Driven Dynamics Of Cytoskeletal Filaments In Motility Assays, Shiladitya Banerjee, M. Cristina Marchetti, Kristian Muller-Nedebock

Physics - All Scholarship

We model analytically the dynamics of a cytoskeletal filament in a motility assay. The filament is described as rigid rod free to slide in two dimensions. The motor proteins consist of polymeric tails tethered to the plane and modeled as linear springs and motor heads that bind to the filament. As in related models of rigid and soft two-state motors, the binding/unbinding dynamics of the motor heads and the dependence of the transition rates on the load exerted by the motor tails play a crucial role in controlling the filament's dynamics. Our work shows that the filament effectively behaves as …


Evidence For Power-Law Griffiths Singularities In A Layered Heisenberg Magnet, Fawaz Hrahsheh, Hatem Barghathi, Priyanka Mohan, Rajesh Narayanan, Thomas Vojta Jun 2011

Evidence For Power-Law Griffiths Singularities In A Layered Heisenberg Magnet, Fawaz Hrahsheh, Hatem Barghathi, Priyanka Mohan, Rajesh Narayanan, Thomas Vojta

Physics Faculty Research & Creative Works

We study the ferromagnetic phase transition in a randomly layered Heisenberg model. A recent strong-disorder renormalization group approach [Phys. Rev. B 81, 144407 (2010)] predicted that the critical point in this system is of exotic infinite-randomness type and is accompanied by strong power-law Griffiths singularities. Here, we report results of Monte-Carlo simulations that provide numerical evidence in support of these predictions. Specifically, we investigate the finite-size scaling behavior of the magnetic susceptibility which is characterized by a non-universal power-law divergence in the Griffiths phase. In addition, we calculate the time autocorrelation function of the spins. It features a very slow …


Dynamical Critical Scaling And Effective Thermalization In Quantum Quenches: Role Of The Initial State, Shusa Deng, Gerardo Ortiz, Lorenza Viola Mar 2011

Dynamical Critical Scaling And Effective Thermalization In Quantum Quenches: Role Of The Initial State, Shusa Deng, Gerardo Ortiz, Lorenza Viola

Dartmouth Scholarship

We explore the robustness of universal dynamical scaling behavior in a quantum system near criticality with respect to initialization in a large class of states with finite energy. By focusing on a homogeneous XY quantum spin chain in a transverse field, we characterize the nonequilibrium response under adiabatic and sudden quench processes originating from a pure as well as a mixed excited initial state, and involving either a regular quantum critical or a multicritical point. We find that the critical exponents of the ground-state quantum phase transition can be encoded in the dynamical scaling exponents despite the finite energy of …


Unitary-Quantum-Lattice Algorithm For Two-Dimensional Quantum Turbulence, Bo Zhang, George Vahala, Linda L. Vahala, Min Soe Jan 2011

Unitary-Quantum-Lattice Algorithm For Two-Dimensional Quantum Turbulence, Bo Zhang, George Vahala, Linda L. Vahala, Min Soe

Electrical & Computer Engineering Faculty Publications

Quantum vortex structures and energy cascades are examined for two-dimensional quantum turbulence (2D QT) at zero temperature. A special unitary evolution algorithm, the quantum lattice algorithm, is employed to simulate the Bose-Einstein condensate governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a short Poincare recurrence time. It is demonstrated that such short recurrence times are destroyed by stronger nonlinear interaction. The similar loss of Poincare recurrence is also seen in the 3D GP equation. Various initial conditions are considered in an attempt to discern if 2D QT exhibits inverse …


Poincare Recurrence And Spectral Cascades In Three-Dimensional Quantum Turbulence, George Vahala, Jeffrey Yepez, Linda L. Vahala, Min Soe, Bo Zhang, Sean Ziegeler Jan 2011

Poincare Recurrence And Spectral Cascades In Three-Dimensional Quantum Turbulence, George Vahala, Jeffrey Yepez, Linda L. Vahala, Min Soe, Bo Zhang, Sean Ziegeler

Electrical & Computer Engineering Faculty Publications

The time evolution of the ground state wave function of a zero-temperature Bose-Einstein condensate (BEC) gas is well described by the Hamiltonian Gross-Pitaevskii (GP) equation. Using a set of appropriately interleaved unitary collision-stream operators, a qubit lattice gas algorithm is devised, which on taking moments, recovers the Gross-Pitaevskii (GP) equation under diffusion ordering (time scales as length2). Unexpectedly, there is a class of initial states whose Poincaré recurrence time is extremely short and which, as the grid resolution is increased, scales with diffusion ordering (and not as length3). The spectral results of J. Yepez et al. …


Dynamical Conductivity At The Dirty Superconductor-Metal Quantum Phase Transition, Adrian Del Maestro, Bernd Rosenow, Jose A. Hoyos, Thomas Vojta Oct 2010

Dynamical Conductivity At The Dirty Superconductor-Metal Quantum Phase Transition, Adrian Del Maestro, Bernd Rosenow, Jose A. Hoyos, Thomas Vojta

Physics Faculty Research & Creative Works

We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.


Fluctuations And Pattern Formation In Self-Propelled Particles, Shradha Mishra, Aparna Baskaran, M. Cristina Marchetti Apr 2010

Fluctuations And Pattern Formation In Self-Propelled Particles, Shradha Mishra, Aparna Baskaran, M. Cristina Marchetti

Physics - All Scholarship

We consider a coarse-grained description of a system of self-propelled particles given by hydrodynamic equations for the density and polarization fields. We find that the ordered moving or flocking state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating stripes of flocking particles interspersed with low density disordered regions. Further, we find that even in the regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density and orientational order. …