Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

SERS

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 43

Full-Text Articles in Physical Sciences and Mathematics

Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper Jan 2024

Cumulative Distribution Function And Spatially Resolved Surface-Enhanced Raman Spectroscopy For The Quantitative Analysis Of Emtricitabine, Jana Hrncirova, Marguerite R. Butler, Sucharita Dutta, Meredith R. Clark, John B. Cooper

Chemistry & Biochemistry Faculty Publications

Surface-enhanced Raman spectroscopy (SERS) has exceptional analytical sensitivity and selectivity. However, SERS irreproducibility presents an obstacle when using it for precise quantitative measurements. In this study, colloidal nanoparticles evaporated to dryness are used as a SERS active surface for the detection of the HIV drug emtricitabine (FTC; trade name Emtriva). Despite the irreproducibility of the SERS resulting from the stochastic process of evaporation, using a SERS scanning instrument, the SERS enhancement factors of spatially resolved spectra have a well-defined distribution of signals for a given analyte concentration. This distribution follows a power law function ranging from weak (very abundant signals) …


Sers For The Detection Of Trace Materials, Omari Kirkland Jun 2023

Sers For The Detection Of Trace Materials, Omari Kirkland

Dissertations, Theses, and Capstone Projects

In this dissertation are presented three projects that contribute to the body of research on SERS in the forensic, heritage, and semiconductor fields. The first project, Charge-Transfer mapping on GaN/Ag, a silver-decorated nanopillar semiconductor substrate fabricated from the GaN is used with the Raman probe Rhodamine 6 G (R6G) to map the effect of the nanofeatures on the CT resonance. The second project, in collaboration with Marco Leona from the Metropolitan Museum of Art, explores the use of AgNIFs to identify colorants used on textile fiber samples from four 19th century works of Japanese art. The final project analyzes the …


Detection And Quantification Of Antiviral Drug Tenofovir Using Silver Nanoparticles And Surface Enhanced Raman Spectroscopy (Sers) With Spatially Resolved Hotspot Selection, Marguerite R. Butler, Jana Hrncirova, Terry A. Jacot, Sucharita Dutta, Meredith R. Clark, Gustavo F. Doncel, John B. Cooper Jan 2023

Detection And Quantification Of Antiviral Drug Tenofovir Using Silver Nanoparticles And Surface Enhanced Raman Spectroscopy (Sers) With Spatially Resolved Hotspot Selection, Marguerite R. Butler, Jana Hrncirova, Terry A. Jacot, Sucharita Dutta, Meredith R. Clark, Gustavo F. Doncel, John B. Cooper

Chemistry & Biochemistry Faculty Publications

This study introduces a convenient and ultra-sensitive method of detection and quantification of the antiviral drug, tenofovir (TFV), by surface-enhanced Raman spectroscopy (SERS). Novel spatially resolved instrumentation for spectral acquisition and subsequent statistical analysis for hot spot selection was developed for convenient quantification of TFV in an aqueous matrix. Methods of statistical analysis include the use of partial least squares (PLS) regression vector analysis and spectral ranking by quality indices computed using CHAOS theory. Hydroxylamine-reduced Ag colloidal nanoparticles evaporated to dryness on an aluminum well-plate were used as the SERS substrate. To our knowledge, quantification of TFV down to 25 …


Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas Nov 2022

Sers Platform For Single Fiber Endoscopic Probes, Debsmita Biswas

LSU Doctoral Dissertations

Molecular detection techniques have huge potential in clinical environments. In addition to many other molecular detection techniques, endoscopic Raman spectroscopy has great ability in terms of minimal invasiveness and real-time spectra acquisition. However, Raman Effect is low in sensitivity, limiting the application. Surface-Enhanced Raman Scattering (SERS), addresses this limitation. SERS brings rough nano-metallic surfaces in contact with specimen molecules which enormously enhances Raman signals. This provides Raman spectroscopy with immense capabilities for diverse fields of applications.

Generally, in clinical probe applications, the spectrometer is brought near the target molecules for detection. Typically, optical fibers are used to couple spectrometers to …


The Use Of Electrospun Nanofibers With Gold And Silver Nanostars For The Detection Of Fentanyl Using Surface Enhance Raman Spectroscopy, The Modification Of Current Gc-Ms Methods To Increase Separation And Detection Of Synthetic Cathinones In Mixtures, Daniel Rubin Jun 2022

The Use Of Electrospun Nanofibers With Gold And Silver Nanostars For The Detection Of Fentanyl Using Surface Enhance Raman Spectroscopy, The Modification Of Current Gc-Ms Methods To Increase Separation And Detection Of Synthetic Cathinones In Mixtures, Daniel Rubin

FIU Electronic Theses and Dissertations

Many criminal cases involve the use or sale of illicit substances. The forensic analyst has many different techniques they can use to analyze samples to determine which illicit substance is present. This project aims at developing electrospun nanofibers with nanoparticles to analyze fentanyl by surface enhanced Raman spectroscopy, as well as modifying current GC-MS parameters to enhance separation and analysis of synthetic cathinones. Using the fibers with nanoparticles allowed for the detection of fentanyl standards at 1mg/ml while slowing the oven ramp rate and modifying the hold times led to an increase in separation and better fragmentation patterns for determination. …


Real-Time Monitoring Of Paraquat Photodegradation Using Colloidal Gold Surface Enhanced Raman Spectroscopy, Nathan Wilson May 2022

Real-Time Monitoring Of Paraquat Photodegradation Using Colloidal Gold Surface Enhanced Raman Spectroscopy, Nathan Wilson

Masters Theses & Specialist Projects

Monitoring chemical reactions in aqueous solution is a challenge because most instrumental techniques either are not suited for the rapid timescales, are not sensitive enough to detect products at low concentrations, or do not have sufficient structure-to-spectrum relationships. Raman spectroscopy is a promising method to monitor reactions, as it is fast, dependent on chemical structure, and has little interference from water. However, Raman scattering is generally very weak. Surface-enhanced Raman spectroscopy (SERS) improves the signal strength of Raman spectroscopy by using a metal surface plasmon, or oscillation of the surface’s electrons, to allow for highly selective and sensitive detection and …


Towards Plasmon Mapping Of Sers-Active Ag Dewetted Nanostructures Using Spels, Mohamed Beshr, E. Dexter, Paul E. Tierney, Aidan Meade, Shane Murphy, George Amarandei Jan 2022

Towards Plasmon Mapping Of Sers-Active Ag Dewetted Nanostructures Using Spels, Mohamed Beshr, E. Dexter, Paul E. Tierney, Aidan Meade, Shane Murphy, George Amarandei

Articles

Thermal dewetting of silver thin flm can lead to SERS-active Ag nanoparticles. Here, we report our progress towards using scanning probe energy loss spectroscopy (SPELS) to map the plasmonic behaviour of SERS-active Ag nanoparticles (NP) by investigating NPs produced through the dewetting study of Ag thin flms on SiO2/Si and Ti/SiO2/Si substrates. The nanoparticles size and spatial distribution were controlled by the deposition and thermal annealing parameters. The results of preliminary SPELS measurements of these structures, alongside SERS data show that there is a correlation between the Raman enhancement and the nanoparticle size and interparticle spacing.


Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky Oct 2021

Antibiotic Sensitivity Testing Of Foodborne Bacteria Using Surface-Enhanced Raman Spectroscopy, Joshua Gukowsky

Doctoral Dissertations

The spread of antibiotic resistant bacteria around the world has become a major public health issue, and it is essential that effective detection methods exist for identifying these organisms and preventing them from spreading throughout our food systems and into the environment. The goal of this research is to develop a novel analytical procedure that is capable of easily identifying antibiotic resistance in bacterial samples, and also provides more information about the biochemical characteristics of the bacteria and their responses to antibiotic exposure. Surface-enhanced Raman Spectroscopy (SERS), an analytical technique that uses light scattering to produce a spectrum based on …


Human Ace2‑Functionalized Gold “Virus‑Trap” Nanostructures For Accurate Capture Of Sars‑Cov‑2 And Single‑Virus Sers Detection, Yong Yang, Yusi Peng, Chenglong Lin, Li Long, Jingying Hu, Jun He, Hui Zeng, Zhengren Huang, Zhi-Yuan Li, Masaki Tanemura, Jianlin Shi, John R. Lombardi, Xiaoying Luo Apr 2021

Human Ace2‑Functionalized Gold “Virus‑Trap” Nanostructures For Accurate Capture Of Sars‑Cov‑2 And Single‑Virus Sers Detection, Yong Yang, Yusi Peng, Chenglong Lin, Li Long, Jingying Hu, Jun He, Hui Zeng, Zhengren Huang, Zhi-Yuan Li, Masaki Tanemura, Jianlin Shi, John R. Lombardi, Xiaoying Luo

Publications and Research

The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus. Here, we present a Human Angiotensin-converting-enzyme 2 (ACE2)-functionalized gold “virus traps” nanostructure as an extremely sensitive SERS biosensor, to selectively capture and rapidly detect S-protein expressed coronavirus, such as the current SARS-CoV-2 in the contaminated water, down to the single-virus level. Such a SERS sensor features extraordinary 106- fold virus enrichment originating from high-affinity of ACE2 with S protein as well as “virus-traps” composed of oblique gold nanoneedles, and 109- fold enhancement of Raman signals originating from multicomponent SERS effects. Furthermore, the identification standard of virus …


A Dual Nanostructured Approach To Sers Substrates Amenable To Large-Scale Production, Kory Brian Castro, Cicely Rathmell, John Cooper Jan 2021

A Dual Nanostructured Approach To Sers Substrates Amenable To Large-Scale Production, Kory Brian Castro, Cicely Rathmell, John Cooper

Chemistry & Biochemistry Faculty Publications

Surface enhanced Raman spectroscopy (SERS), although popular in research, has not yet been adopted in industrial applications. This is largely due to the challenge of manufacturing cost-effective, reproducible SERS substrates in volume that can be read by a compact reader for practical deployment in the field. Here we demonstrate and characterize a new dual-nanostructured SERS substrate approach that could be amenable to large-scale production. This dual-nanostructured surface combines long-range ordering of silver nanowires (AgNWs) with dense non-ordered decoration via silver nanoparticles (AgNPs) to improve on the SERS response characteristics of the individual structures, using fabrication methods that could be scaled …


Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu Nov 2020

Surface Enhanced Raman Spectroscopy (Sers) As A Nanoscale Adsorption Phenomenon: Development Of Tailored Nanomaterials For Applications In Drug Detection, Chiara Deriu

FIU Electronic Theses and Dissertations

Surface Enhanced Raman Spectroscopy (SERS) is an analytical technique in which nanostructured substrates amplify the inherently weak Raman signal of an adsorbed species by several orders of magnitude, enabling the detection of trace compounds, up to the single molecule level. While this may be an exceptional tool for any analytical scientist, SERS is at present relegated to the role of academic sensation, and is underutilized in everyday analytical practice. The SERS community is increasingly attributing this setback to a poor understanding of nanoscale surfaces and their chemical environment; since molecular adsorption at the nanostructured surface enables SERS detection, uncertainty about …


Surface-Enhanced Raman Spectroscopy For Single Molecule Analysis And Biological Application, Jing Guo Oct 2020

Surface-Enhanced Raman Spectroscopy For Single Molecule Analysis And Biological Application, Jing Guo

FIU Electronic Theses and Dissertations

Surface-enhanced Raman spectroscopy (SERS) is a surface analytical technique, which enhances the Raman signal based on the localized surface plasmon resonance (LSPR) phenomenon. It has been successfully used for single molecule (SM) detection and has extended SERS to numerous applications in biomolecular detection. However, SM detection by SERS is still challenging especially with traditional SERS substrates and detection methods. In addition, the fundamental understanding of the SERS enhancement mechanism is still elusive. Furthermore, the application of SERS in biological field is still in the early stage. To address these challenges, there are two main aspects of SERS studied in my …


The Development Of A Surface Enhanced Raman Spectroscopy Method For The Detection Of Synthetic Cannabinoids In Urine, Thaddeus Mostowtt Jul 2020

The Development Of A Surface Enhanced Raman Spectroscopy Method For The Detection Of Synthetic Cannabinoids In Urine, Thaddeus Mostowtt

FIU Electronic Theses and Dissertations

The use and abuse of synthetic cannabinoids has increased significantly in recent years due to their easy access and growing popularity. Despite having more known drugs become illegal, new synthetic versions of these drugs are being made that have not yet been recognized or classified as illegal substances. Therefore, standard methods may not be able to detect these drugs.

The most common method of screening detection for drugs of abuse in biological samples is the immunoassay. However, the immunoassay method presents some disadvantages, particularly for newly synthesized compounds. More advanced methods have also been used, such as LC-MS; however, these …


Using Surface-Enhanced Raman Scattering Of Gold Nanostars For Encoding Molecular Information, Samantha E. Curry Apr 2020

Using Surface-Enhanced Raman Scattering Of Gold Nanostars For Encoding Molecular Information, Samantha E. Curry

Honors Thesis

Increases in the selling of illicit goods warrant a subsequent need for even more sophisticated methods to prevent counterfeit products from being sold. Surface-enhanced Raman spectroscopy (SERS) has the potential to be a powerful tool to thwart counterfeiters because the unique security tags fabricated with this method are difficult to reproduce without knowing the “secret” recipes used in their preparation. In this work, gold nanostars are used as SERS active substrates since their branched structure allows for strong coupling between the light and plasmonic nanoparticles. As a result, Raman signals of trace amount of chemicals can be easily detected. The …


Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb Apr 2020

Monitoring And Identifying The Rhodamine 6g-Hydroxide Ion Reaction Using In-Situ, Surface-Enhanced Raman Spectroscopy, Ryan Lamb

Masters Theses & Specialist Projects

An effective method for monitoring chemical reactions is necessary to better understand their mechanisms and kinetics. Effective reaction monitoring requires a spectroscopy technique with fast data acquisition, high sensitivity, structure-to-spectrum correlation, and low solvent interference. Surface-enhanced Raman spectroscopy (SERS) provides these features, which makes it a valuable tool for monitoring reactions. To obtain the Raman enhancement, metallic nanostructures typically made of silver or gold are aggregated using a salt. The nanoparticles aggregates must then be stabilized using a surfactant to use this method in situ due to eventual nanoparticle precipitation. In this study, gold nanoparticles stabilized with sodium dodecyl sulfate …


Raman And Surface Enhanced Raman Spectroscopy For Forensic Analysis: Case Studies On The Identification Of Illicit Substances And Artist Pigments, Abed Haddad May 2019

Raman And Surface Enhanced Raman Spectroscopy For Forensic Analysis: Case Studies On The Identification Of Illicit Substances And Artist Pigments, Abed Haddad

Dissertations, Theses, and Capstone Projects

Raman spectroscopy is an effective tool for detecting trace amounts of material by fingerprint-like vibrational spectra. At times, the weak intensity of Raman scattering can make it difficult to distinguish trace materials. This shortcoming is addressed by surface‐enhanced Raman spectroscopy (SERS), which produces strong signal enhancements when target compounds are near metal nanoparticles. For the first part of this thesis, the identification of fentanyl and carfentanil, main culprits in the opioid epidemic, was done using normal Raman and the SERS spectroscopy. As an aid in the assignment of the spectral lines, a computational model was built using Density Functional Theory …


A Dual Nanostructured Approach To Sers Amenable To Large-Scale Production, Kory Brian Castro Apr 2019

A Dual Nanostructured Approach To Sers Amenable To Large-Scale Production, Kory Brian Castro

Chemistry & Biochemistry Theses & Dissertations

A SERS device was made using a dual-nanostructured surface comprised of silver nanoparticle and silver nanowires. The ability of each nanostructure to produce a uniform surface was characterized and the surface-enhanced Raman scattering (SERS) response of the resulting surfaces were examined using the reporter molecule 4-aminothiolphenol (ATP) and a 638 nm excitation laser.

A synthetic method was developed to produce silver nanowires with lengths of ~20 μm and diameters of ~100 nm with a narrow size distribution. The method utilized a simple, one-pot synthesis that is amenable to large-scale production. A selective precipitation method was used to the isolate the …


Sers For Protein Detection At A Single Molecule Level For Developing A New Medical Diagnostics Platform, Lamyaa Almehmadi Jan 2019

Sers For Protein Detection At A Single Molecule Level For Developing A New Medical Diagnostics Platform, Lamyaa Almehmadi

Legacy Theses & Dissertations (2009 - 2024)

A two-step process of protein detection at a single molecule level using Surface Enhanced Raman Spectroscopy (SERS) was developed as a new platform for medical diagnostics in this proof-of-concept study. First, a protein molecule was bound to a linker in the bulk solution and then this adduct was chemically reacted with the SERS substrate. Traut’s Reagent (TR) was used to thiolate Bovine serum albumin (BSA) in solution followed by chemical cross linking to a gold surface through a sulfhydryl group. A Glycine-TR adduct was used as a control sample to identify the protein contribution to the SER spectra. Gold SERS …


Multifunctional Microgels For Nanoparticle-Based Detection Methodologies, Alyson Silva Jan 2019

Multifunctional Microgels For Nanoparticle-Based Detection Methodologies, Alyson Silva

WWU Graduate School Collection

In this study, pH-responsive microgel particles, comprised of 2-vinyl pyridine (P2VP) and styrene (PS), are explored as scaffolds to assemble metallic nanoparticles (NPs) for ultrasensitive detection strategies. Microgel particles serve as size-tunable scaffolds to assemble metal (silver or gold) NPs for surface-enhanced Raman scattering (SERS) vibrational spectroscopy. The high sensitivity of SERS arises from the enormous enhancement of the Raman scattering cross sections of molecules adsorbed to roughened metal surfaces, such as metal NPs. Using a sterically stabilized latex of random copolymers of PS and P2VP (PSxP2VPy), this polymer is capable of transitioning to a microgel state through acid-base titration. …


Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman Dec 2018

Optimizing The Plasmonic Enhancement Of Light In Metallic Nanogap Structures For Surface-Enhanced Raman Spectroscopy, Stephen Joseph Bauman

Graduate Theses and Dissertations

Technology based on the interaction between light and matter has entered something of a renaissance over the past few decades due to improved control over the creation of nanoscale patterns. Tunable nanofabrication has benefitted optical sensing, by which light is used to detect the presence or quantity of various substances. Through methods such as Raman spectroscopy, the optical spectra of solid, liquid, or gaseous samples act as fingerprints which help identify a single type of molecule amongst a background of potentially many other chemicals. This technique therefore offers great benefit to applications such as biomedical sensors, airport security, industrial waste …


Use Of Surface Enhanced Raman Spectroscopy For The Detection Of Bioactive Lipids, Christopher M. Ohlhaver Jan 2018

Use Of Surface Enhanced Raman Spectroscopy For The Detection Of Bioactive Lipids, Christopher M. Ohlhaver

Theses and Dissertations

The detection and analysis of lipids in biological matrices for clinical applications poses many challenges, but rapid and reliable detection will prove invaluable for clinical diagnosis. Herein, we report the application of drop-casted Ag nanoplatelets as surface enhanced Raman scattering (SERS) substrates for qualitative detection of 20-hydroxyeicosatetraenoic acid (20-HETE), which is a potential biomarker for diagnosis of hypertensive disorders. Biomarker peaks of 20-HETE can be reliably detected and differentiated from those of the structurally similar lipids (arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid) commonly found in human blood, even 1 pM concentrations. Additionally, one study mixed 20-HETE with three structurally …


Chelator-Free Radiolabeling Of Serrs Nanoparticles For Whole-Body Pet And Intraoperative Raman Imaging, Matthew A. Wall, Travis Shaffer, Stefan Harmsen, Darjus-Felix Tschaharganeh, Chun-Hao Huang, Scott W. Lowe, Charles Michael Drain, Moritz F. Kircher Jul 2017

Chelator-Free Radiolabeling Of Serrs Nanoparticles For Whole-Body Pet And Intraoperative Raman Imaging, Matthew A. Wall, Travis Shaffer, Stefan Harmsen, Darjus-Felix Tschaharganeh, Chun-Hao Huang, Scott W. Lowe, Charles Michael Drain, Moritz F. Kircher

Publications and Research

A single contrast agent that offers whole-body non-invasive imaging along with the superior sensitivity and spatial resolution of surface-enhanced resonance Raman scattering (SERRS) imaging would allow both pre-operative mapping and intraoperative imaging and thus be highly desirable. We hypothesized that labeling our recently reported ultrabright SERRS nanoparticles with a suitable radiotracer would enable pre-operative identification of regions of interest with whole body imaging that can be rapidly corroborated with a Raman imaging device or handheld Raman scanner in order to provide high precision guidance during surgical procedures. Here we present a straightforward new method that produces radiolabeled SERRS nanoparticles for …


In Situ Arsenic Speciation Using Surface-Enhanced Raman Spectroscopy, Mingwei Yang Jun 2017

In Situ Arsenic Speciation Using Surface-Enhanced Raman Spectroscopy, Mingwei Yang

FIU Electronic Theses and Dissertations

Arsenic (As) undergoes extensive metabolism in biological systems involving numerous metabolites with varying toxicities. It is important to obtain reliable information on arsenic speciation for understanding toxicity and relevant modes of action. Currently, popular arsenic speciation techniques, such as chromatographic/electrophoretic separation following extraction of biological samples, may induce the alternation of arsenic species during sample preparation. The present study was aimed to develop novel arsenic speciation methods for biological matrices using surface-enhanced Raman spectroscopy (SERS), which, as a rapid and non-destructive photon scattering technique. The use of silver nanoparticles with different surface coating molecules as SERS substrates permits the measurement …


The Advanced Spectroscopic Analysis Of Organic Gunshot Residue And Explosives, Jennifer M. Leonard Jun 2017

The Advanced Spectroscopic Analysis Of Organic Gunshot Residue And Explosives, Jennifer M. Leonard

Dissertations, Theses, and Capstone Projects

With the prevalence of shooting cases and terrorist attacks/or threats that plague the current state of the criminal justice system, it is of paramount importance to be able to detect, identify and interpret the presence of gunshot residue or explosives material. This concern is seen in law enforcement agencies and the media throughout the United States and abroad.

Currently, the typical method of analyzing gunshot residue in most crime laboratories serves to identify the inorganic constituents of the primer residue, namely lead, barium and antimony. However, it is possible that the organic matter from the propellant could provide different information …


Development Of Filter-Based Surface Enhanced Raman Spectroscopic Assays For Rapid Detection Of Chemical And Biological Contaminants In Water, Siyue Gao Nov 2016

Development Of Filter-Based Surface Enhanced Raman Spectroscopic Assays For Rapid Detection Of Chemical And Biological Contaminants In Water, Siyue Gao

Masters Theses

Surface enhanced Raman spectroscopy (SERS) has been widely applied for rapid and sensitive detection of various chemical and biological targets. Here, we incorporated a syringe filter system into the SERS method to detect pesticides, protein toxins and bacteria in water. For the detection of chemical and protein targets, silver nanoparticles (Ag NPs) were aggregated by sodium chloride (NaCl) to form nanoclusters that could be trapped in the pores of the filter membrane to from the SERS-active membrane. Then a coating of capture (e.g. aptamer) was integrated on the nanoparticle substrate if needed. Then samples were filtered through the membrane. After …


Expanding The Applicability Of Raman Spectroscopy For Monitoring Photocatalytic Degradation, Franklyn Wallace Sep 2016

Expanding The Applicability Of Raman Spectroscopy For Monitoring Photocatalytic Degradation, Franklyn Wallace

Mahurin Honors College Capstone Experience/Thesis Projects

Compared to other types of wastewater pollutants, dangerous chemical compounds such as pharmaceuticals, pesticides, and herbicides are difficult to remove and consequently being detected (at least in part because detection limits have decreased) in drinking water at increasing concentrations. Photocatalytic degradation degrades harmful compounds to innocuous end products using energy from light. Although it is effective and cost-efficient, the underlying chemical mechanisms are not understood well enough to ensure that dangerous intermediate products are not formed during the degradation process. Raman spectroscopy can be used to analyze photocatalytic degradation reactions in real time, identifying intermediate products based on spectral features. …


Surface-Enhanced Raman Scattering Optical Fibers As Chemical Sensors, Deanna Myers, Luke Degraaff May 2016

Surface-Enhanced Raman Scattering Optical Fibers As Chemical Sensors, Deanna Myers, Luke Degraaff

Scholars Week

There is a great need to be able to measure chemical environments at both the cellular and sub- cellular levels in real time because chemical irregularities in these environments are indicative of many disease states. In this project, a surface-enhanced Raman scattering (SERS) based optical fiber sensor is designed to monitor pH in real time. SERS spectra of reporter molecules adsorbed on the fiber are used to deliver information on the chemical composition of the environment.


Sol-Gel Assembly Of Metal Nanostructures Into Metallic Gel Frameworks And Their Applications, Xiaonan Gao Jan 2016

Sol-Gel Assembly Of Metal Nanostructures Into Metallic Gel Frameworks And Their Applications, Xiaonan Gao

Theses and Dissertations

The advent of nanoscience and nanotechnology has sparked many research forefronts in the creation of materials with control over size, shape, composition, and surface properties.1,2 However, for most of the applications, nanoscale materials need to be assembled into functional nanostructures that exhibit useful and controllable physical properties. Therefore, numerous efforts on the assembly of nanoparticles (NPs) using organic ligands, polymers and polyelectrolytes have been reported.3,4 However, the interactions between NPs are mediated by intervening ligands, which are detrimental to charge transport and limit the thermal stability. Hence, developing a new method to produce solid …


Utilization Of Antibody-Conjugated Gold Nanoparticles, Dynamic Light Scattering And Sers In Influenza Virus Detection, Yen Hoang Lai Sep 2015

Utilization Of Antibody-Conjugated Gold Nanoparticles, Dynamic Light Scattering And Sers In Influenza Virus Detection, Yen Hoang Lai

Theses and Dissertations

Influenza A H3N2, H1N1, and influenza B viruses primarily cause winter illness in humans, leading to significant morbidity and mortality in the population of the very young, the elderly, and people with chronic disease. In addition to the regular seasonal epidemics of influenza, influenza pandemics associated with the emergence of new influenza A strains are threatening due to high levels of mortality, social disruption, and economic losses. These novel strains are not affected by the human immunity developed to older strains of influenza, therefore can spread readily and infect a vast number of people. The most recent flu pandemic outbreak …


Development Of A Surface-Enhanced Raman Spectroscopy Method For The Detection Of Benzodiazepines In Urine, Erika L. Doctor Nov 2014

Development Of A Surface-Enhanced Raman Spectroscopy Method For The Detection Of Benzodiazepines In Urine, Erika L. Doctor

FIU Electronic Theses and Dissertations

Benzodiazepines are among the most prescribed compounds for anti-anxiety and are present in many toxicological screens. These drugs are also prominent in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to their potency, a low dose of these compounds is often administered to victims; therefore, the target detection limit for these compounds in biological samples is 10 ng/mL. Currently these compounds are predominantly analyzed using immunoassay techniques; however more specific screening methods are needed.

The goal of this dissertation was to develop a rapid, specific screening technique for benzodiazepines in urine samples …