Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Relativity

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 65

Full-Text Articles in Physical Sciences and Mathematics

Characterizing And Mitigating Transient Noise In Ligo Observatories For Gravitational Wave Detection, Jane Glanzer Mar 2024

Characterizing And Mitigating Transient Noise In Ligo Observatories For Gravitational Wave Detection, Jane Glanzer

LSU Doctoral Dissertations

The existence of gravitational waves is predicted by Albert Einstein's Theory of General Relativity. Commonly referred to as "ripples in spacetime", these waves are generated by some of the most violent and energetic processes in the universe. Despite their theoretical prediction over a century ago, it wasn't until 2015 that the Advanced LIGO (aLIGO) interferometers in Hanford, WA and Livingston, LA directly detected gravitational waves for the first time, confirming Einstein's theory and ushering in a new era of astrophysics.

Detecting gravitational waves requires incredible precision. Because of the extreme sensitivity required, it is possible for the gravitational wave data …


Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue Jun 2023

Cosmological Vector Fields And Constraining The Neutrino Masses, Avery J. Tishue

Dartmouth College Ph.D Dissertations

In this thesis I explore two main topics: the role and consequences of cosmological vector fields, and new ideas for constraining fundamental physics with state-of-the-art experiments. These topics are disparate in content and technique but unified in their attempt to leverage novel approaches to better understand longstanding questions in cosmology. These questions, such as ``What is causing the universe to accelerate today?'' and ``What are the neutrino masses?'', underpin the modern cosmological paradigm. They play a key role in our understanding of cosmic history, the formation of structure, and the fate of our universe. Answers to or hints about these …


The Spectro-Temporal Relationships Of Repeating Fast Radio Bursts, Mohammed Afif Chamma Oct 2022

The Spectro-Temporal Relationships Of Repeating Fast Radio Bursts, Mohammed Afif Chamma

Electronic Thesis and Dissertation Repository

Fast radio bursts (FRBs) are short and extremely energetic bursts of radiation detected from galaxies across the universe that occur thousands of times a day. Despite advances in instrumentation, it is difficult to explain the enormous implied energy reservoirs of FRBs, their emission mechanism and the existence of repeating and periodic sources. This thesis explores the spectro-temporal properties of repeating FRBs and details the discovery of several new relationships between them, providing valuable information on the nature of FRBs. By measuring the spectro-temporal properties of a sample of bursts from the repeating source FRB20121102A I show that the magnitude of …


Main Sequence Masses And Radii From Gravitational Redshifts, Ted Von Hippel Aug 2019

Main Sequence Masses And Radii From Gravitational Redshifts, Ted Von Hippel

Ted von Hippel

Modern instrumentation makes it possible to measure the mass to radius ratio for main sequence stars in open clusters from gravitational redshifts. For stars where independent information is available for either the mass or the radius, this application of general relativity directly determines the other quantity. Applicable examples are: 1) measuring the radii of solar metallicity main sequence stars for which the mass - luminosity relation is well known, 2) measuring the radii for stars where model atmospheres can be used to determine the surface gravity (the mass to radius squared ratio), 3) refining the mass - radius relation for …


New Tests Of General Relativity, Quentin Bailey Jun 2019

New Tests Of General Relativity, Quentin Bailey

Quentin Bailey

The last decade has seen a rapid increase in the number of precision tests of relativity. This research has been motivated by the intriguing possibility that tiny deviations from relativity might arise in the underlying theory that is widely believed to successfully mesh General Relativity (GR) with quantum physics. Many of these tests have been analyzed within an effective field theory framework which generically describes possible deviations from exact relativity and contains some traditional test frameworks as limiting cases. One part of the activity has been a resurgence of interest in tests of relativity in the Minkowski-spacetime context, where Lorentz …


Prospects For Sme Tests With Experiments At Syrte And Lkb, C. Guerlin, H. Pihan-Le Bars, Q. G. Bailey, P. Wolf Jun 2019

Prospects For Sme Tests With Experiments At Syrte And Lkb, C. Guerlin, H. Pihan-Le Bars, Q. G. Bailey, P. Wolf

Quentin Bailey

Preliminary work has been done in order to assess the perspectives of metrology and fundamental physics atomic experiments at SYRTE and LKB in the search for physics beyond the Standard Model and General Relativity. The first studies we identified are currently ongoing with the Microscope mission and with a Cs fountain clock. The latter brings significant improvement on the proton-sector coefficient cTT down to the 10−17 GeV level.


Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al. Jun 2019

Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al.

Quentin Bailey

Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics, called the Standard-Model Extension or SME. We consider in this work only the pure gravitational sector of the minimal SME. We present new constraints on the SME coefficients obtained from lunar laser ranging, very long baseline interferometry, and planetary motions.


A 3+1 Decomposition Of The Minimal Standard-Model Extension Gravitational Sector, Nils A. Nilsson, Kellie O'Neal-Ault, Quentin G. Bailey May 2019

A 3+1 Decomposition Of The Minimal Standard-Model Extension Gravitational Sector, Nils A. Nilsson, Kellie O'Neal-Ault, Quentin G. Bailey

Publications

The 3+1 (ADM) formulation of General Relativity is used in, for example, canonical quantum gravity and numerical relativity. Here we present a 3+1 decomposition of the minimal Standard-Model Extension gravity Lagrangian. By choosing the leaves of foliation to lie along a timelike vector field we write the theory in a form which will allow for comparison and matching to other gravity models.


Recent Developments In Spacetime-Symmetry Tests In Gravity, Q. G. Bailey May 2019

Recent Developments In Spacetime-Symmetry Tests In Gravity, Q. G. Bailey

Publications

Motivated by potentially detectable but minuscule signatures from Planckscale or other new physics, there has been a substantial increase in tests of spacetime symmetry in gravity in recent years. Some novel hypothetical effects that break local Lorentz symmetry and CPT symmetry in gravitational experiments as well as solar system and astrophysical observations have been studied in recent works. Much of this work uses the effective field theory framework, the Standard-Model Extension (SME), that includes gravitational couplings. In other cases, the parameters in specific hypothetical models of Lorentz violation in gravity have been tested.


Testing The Gravitational Weak Equivalence Principle In The Standard-Model Extension With Binary Pulsars, Lijing Shao, Quentin G. Bailey Apr 2019

Testing The Gravitational Weak Equivalence Principle In The Standard-Model Extension With Binary Pulsars, Lijing Shao, Quentin G. Bailey

Publications

The standard model extension provides a framework to systematically investigate possible violation of the Lorentz symmetry. Concerning gravity, the linearized version was extensively examined. We here cast the first set of experimental bounds on the nonlinear terms in the field equation from the anisotropic cubic curvature couplings. These terms introduce body-dependent accelerations for self-gravitating objects, thus violating the gravitational weak equivalence principle (GWEP). Novel phenomena, which are absent in the linearized gravity, remain experimentally unexplored. We constrain them with precise binary-orbit measurements from pulsar timing, wherein the high density and large compactness of neutron stars are crucial for the test. …


What Causes Black Holes To Spin?, Mac B. Selesnick Jan 2019

What Causes Black Holes To Spin?, Mac B. Selesnick

Senior Projects Spring 2019

Black holes are recently at the cutting edge of cosmological and astrophysical research. Both experiment and theory are leading to surprising conclusions on the physical properties of black holes and their affects on space and time. In this project, I set out to explore the origin and mechanics of a black hole's spin, that is, its internal angular momentum. What causes a black hole to spin in the first place is rich and nuanced. In order to make this project accessible and focused I explore the process of a minor merger, a collision between two black holes, one large and …


A Companion To The Introduction To Modern Dynamics, David D. Nolte Dec 2018

A Companion To The Introduction To Modern Dynamics, David D. Nolte

David D Nolte

A Jr/Sr Mechanics/Dynamics textbook from Oxford University Press, updating how we teach undergraduate physics majors with increased relevance for physics careers in changing times.

Additional materials, class notes and examples to go with the textbook Introduction to Modern Dynamics: Chaos, Networks, Space and Time (Oxford University Press, 2019).

The best parts of physics are the last topics that our students ever see.  These are the exciting new frontiers of nonlinear and complex systems that are at the forefront of university research and are the basis of many of our high-tech businesses.  Topics such as traffic on the World Wide Web, …


Gravitational Effects In G -Factor Measurements And High-Precision Spectroscopy: Limits Of Einstein's Equivalence Principle, Ulrich D. Jentschura Sep 2018

Gravitational Effects In G -Factor Measurements And High-Precision Spectroscopy: Limits Of Einstein's Equivalence Principle, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

We study the interplay of general relativity, the equivalence principle, and high-precision experiments involving atomic transitions and g-factor measurements. In particular, we derive a generalized Dirac Hamiltonian, which describes both the gravitational coupling for weak fields and the electromagnetic coupling, e.g., to a central Coulomb field. An approximate form of this Hamiltonian is used to derive the leading gravitational corrections to transition frequencies and g factors. The position dependence of atomic transitions is shown to be compatible with the equivalence principle, up to a very good approximation. The compatibility of g-factor measurements requires a deeper subtle analysis in order to …


Search For Tensor, Vector, And Scalar Polarizations In The Stochastic Gravitational-Wave Background, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2018

Search For Tensor, Vector, And Scalar Polarizations In The Stochastic Gravitational-Wave Background, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find …


First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al. Jan 2018

First Search For Nontensorial Gravitational Waves From Known Pulsars, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, S. G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper …


Background, 2, David Peak Jan 2018

Background, 2, David Peak

Background

Ordinary, everyday, Galilean/Newtonian relativity

An “event” is something that happens at a point in space, at an instant in time. In physics, relativity means the rules by which two observers can compare and make sense of measurements each makes of the positions and times of the same events. In physics, an observer is not a person or an individual measuring device. Such isolated “detectors” are plagued by experimental issues of parallax, delay times, and so forth. For our purposes, an observer will always mean an infinite collection of rigidly attached, perfect sensors and microprocessors whose internal clocks are perfectly synchronized. …


First Search For Nontensorial Gravitational Waves From Known Pulsars, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jan 2018

First Search For Nontensorial Gravitational Waves From Known Pulsars, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We present results from the first directed search for nontensorial gravitational waves. While general relativity allows for tensorial (plus and cross) modes only, a generic metric theory may, in principle, predict waves with up to six different polarizations. This analysis is sensitive to continuous signals of scalar, vector, or tensor polarizations, and does not rely on any specific theory of gravity. After searching data from the first observation run of the advanced LIGO detectors for signals at twice the rotational frequency of 200 known pulsars, we find no evidence of gravitational waves of any polarization. We report the first upper …


Quantum Physics And Relativity In Lovecraft's Fiction, Garrison Mccammon Jul 2017

Quantum Physics And Relativity In Lovecraft's Fiction, Garrison Mccammon

English Summer Fellows

The early twentieth century brought about some of the best and most influential horror or weird tales ever written in the English speaking world. The most impressive and most lauded author of the group composed of such figures as Algernon Blackwood, M. R. James, Arthur Machen, Clark A. Smith, and Robert E. Howard was H. P. Lovecraft. Posthumously declared the literary successor to Edgar Allan Poe, Lovecraft’s fiction and tales of terror have cast such a huge shadow that every significant author in weird writing since his passing has claimed him as a literary heir. Lovecraft’s works were a landmark …


Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2017

Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10 11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2-6.0+8.4M⊙ and 19.4-5.9+5.3M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective …


Series Solutions Of Polarized Gowdy Universes, Doniray Brusaferro Jan 2017

Series Solutions Of Polarized Gowdy Universes, Doniray Brusaferro

Theses and Dissertations

Einstein's field equations are a system of ten partial differential equations. For a special class of spacetimes known as Gowdy spacetimes, the number of equations is reduced due to additional structure of two dimensional isometry groups with mutually orthogonal Killing vectors. In this thesis, we focus on a particular model of Gowdy spacetimes known as the polarized T3 model, and provide an explicit solution to Einstein's equations.


Unification Of Gravity And Quantum Theory, Adam Daniels Jan 2017

Unification Of Gravity And Quantum Theory, Adam Daniels

Faculty-Sponsored Student Research & Capstones

An overview of the four fundamental forces of physics as described by the Standard Model (SM) and prevalent unifying theories beyond it is provided. Background knowledge of the particles governing the fundamental forces is provided, as it will be useful in understanding the way in which the unification efforts of particle physics has evolved, either from the SM, or apart from it. It is shown that efforts to provide a quantum theory of gravity have allowed supersymmetry (SUSY) and M-Theory to become two of the prevailing theories for unifying gravity with the remaining non-gravitational forces.


Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Oct 2016

Binary Black Hole Mergers In The First Advanced Ligo Observing Run, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100M and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, …


Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono Jun 2016

Black Holes Modeled As Fluid Droplets On Membranes, Anthony Bardessono

Physics

No abstract provided.


Prospects For Sme Tests With Experiments At Syrte And Lkb, C. Guerlin, H. Pihan-Le Bars, Q. G. Bailey, P. Wolf Jun 2016

Prospects For Sme Tests With Experiments At Syrte And Lkb, C. Guerlin, H. Pihan-Le Bars, Q. G. Bailey, P. Wolf

Publications

Preliminary work has been done in order to assess the perspectives of metrology and fundamental physics atomic experiments at SYRTE and LKB in the search for physics beyond the Standard Model and General Relativity. The first studies we identified are currently ongoing with the Microscope mission and with a Cs fountain clock. The latter brings significant improvement on the proton-sector coefficient cTT down to the 10−17 GeV level.


Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Gw151226: Observation Of Gravitational Waves From A 22-Solar-Mass Binary Black Hole Coalescence, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, …


Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Jun 2016

Properties Of The Binary Black Hole Merger Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36-4+5 M and 29-4+4M; for each parameter we report the median value and the range of the 90% credible interval. …


Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al. Jun 2016

Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al.

Publications

Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics, called the Standard-Model Extension or SME. We consider in this work only the pure gravitational sector of the minimal SME. We present new constraints on the SME coefficients obtained from lunar laser ranging, very long baseline interferometry, and planetary motions.


Classification Of Spacetimes With Symmetry, Jesse W. Hicks May 2016

Classification Of Spacetimes With Symmetry, Jesse W. Hicks

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Spacetimes with symmetry play a critical role in Einstein's Theory of General Relativity. Missing from the literature is a correct, usable, and computer accessible classification of such spacetimes. This dissertation fills this gap; specifically, we

i) give a new and different approach to the classification of spacetimes with symmetry using modern methods and tools such as the Schmidt method and computer algebra systems, resulting in ninety-two spacetimes;

ii) create digital databases of the classification for easy access and use for researchers;

iii) create software to classify any spacetime metric with symmetry against the new database;

iv) compare results of our …


Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. May 2016

Tests Of General Relativity With Gw150914, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following …


Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website. Feb 2016

Observation Of Gravitational Waves From A Binary Black Hole Merger, Benjamin P. Abbott, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0x10-21. It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a …