Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine Feb 2024

Pisa Printing Microneedles With Controllable Aqueous Dissolution Kinetics, Aaron Priester, Jimmy Yeng, Yuwei Zhang, Krista Hilmas, Risheng Wang, Anthony J. Convertine

Chemistry Faculty Research & Creative Works

This study focused on the development of high-resolution polymeric structures using polymer-induced self-assembly (PISA) printing with commercially available digital light-processing (DLP) printers. Significantly, soluble solids could be 3D-printed using this methodology with controllable aqueous dissolution rates. This was achieved using a highly branched macrochain transfer agent (macro-CTA) containing multiple covalently attached CTA groups. In this work, the use of acrylamide as the self-assembling monomer in isopropyl alcohol was explored with the addition of N-(butoxymethyl)acrylamide to modulate the aqueous dissolution kinetics. PISA-printed microneedles were observed to have feature sizes as small as 27 μm, which was close to the resolution limit …


Reversible Addition-Fragmentation Chain-Transfer Emulsion Polymerization And Its Application To Waterborne Coatings, Andrew Balgeman Jan 2021

Reversible Addition-Fragmentation Chain-Transfer Emulsion Polymerization And Its Application To Waterborne Coatings, Andrew Balgeman

Graduate Research Theses & Dissertations

Waterborne acrylic latex makes up a vast majority of the architectural coatings market, including most of the paints sold in retail stores. Most, if not all, of these latex formulations are prepared using radical polymerization of acrylic monomers. Reversible addition-fragmentation chain-transfer (RAFT) polymerization has been researched for over two decades, but to this point has made very little progress finding success in commercial applications. Indeed, a majority of RAFT research has been dedicated to successfully polymerizing different monomers with good degree of polymerization control, and very little research has been directed toward actual coating applications. In this study, we focused …


Theranostics Based On Linear Dendritic Block Copolymers, Jon Williams Jan 2019

Theranostics Based On Linear Dendritic Block Copolymers, Jon Williams

Electronic Theses and Dissertations

When combining imaging and therapeutic motifs, known as theranostics, amphiphilic diblock copolymers have a strong precedent of success. These polymers can self-assemble into a variety of morphologies that are known to concentrate in areas of inflammation such as tumors. However, prediction of size and morphology from polymer structure still remains an open challenge. Another system with promise of therapeutic efficacy are tree-like struc- tures known as dendrimers, such as poly(amidoamine) (PAMAM) and bis-(hydroxymethyl) propionic acid (bMPA), which can uptake drugs and dyes into their branches. It is desireable to combine these two motifs, using linear-dendritic block copolymers (LDBCs). These represent …


Surface Functionalization Of Inorganic Substrates With Polymeric Ligands Using Raft Polymerization, Anand Viswanath Dec 2014

Surface Functionalization Of Inorganic Substrates With Polymeric Ligands Using Raft Polymerization, Anand Viswanath

Theses and Dissertations

This work focused on using polymers to modify the surface of various inorganic substrates, ranging from TiO2, ITO, CDSe and CdS nanostructures to micron sized silica particles. The synthesis of the polymers using the RAFT technique and the characterization of the functionalized substrates were analyzed in detail to provide insights into their use for various applications. In the first part of this work, novel phosphate based RAFT agents and phosphate containing polymers, including poly(methyl methacrylate) (PMMA), poly(glycidyl methacrylate) (PGMA) and poly(dimethyl siloxane) (PDMS) were synthesized. Alkyne functionalized PGMA was used to click to ITO surfaces in a grafting-to method, and …


Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley Dec 2014

Utilization Of Aqueous Raft Prepared Copolymers To Improve Anticancer Drug Efficacy, Andrew Christopher Holley

Dissertations

The advent of controlled radical polymerization (CRP) techniques, along with advancements in facile conjugation chemistry, now allow synthetic tailoring of precise, polymeric architectures necessary for drug/gene delivery. Reversible addition- fragmentation chain transfer (RAFT) polymerization and its aqueous counterpart (aRAFT) afford quantitative control over key synthetic parameters including block length, microstructure, and placement of structo-pendent and structo-terminal functionality for conjugation of active agents and targeting moieties. The relevance of water-soluble and amphiphilic (co)polymers synthesized by RAFT for in vitro delivery of therapeutics in biological fluids is an especially attractive feature. In many cases, polymerization, binding, conjugation, …


Rational Design Of Self-Assembled Nanostructures Based On Polymers Synthesized Via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization, Stacey Kirkland York May 2010

Rational Design Of Self-Assembled Nanostructures Based On Polymers Synthesized Via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization, Stacey Kirkland York

Dissertations

Recent advances in reversible addition-fragmentation chain transfer (RAFT) polymerization have allowed the rational, bottom-up design of biorelevant assemblies. Utilizing foresight, polymers can be tailored to self-assemble into nano-, micro-, and macroscopic structures. Given the size scale on which rationally-designed polymers can be tailored, they hold significant promise in the biomedical field. For example, nanoscale materials can be designed to carry small-molecule and gene therapeutics while macroscopic structures can be tailored for cell growth scaffolds. The design process begins by selecting monomers, chain transfer agents, and reaction conditions which will yield the desired polymer architecture and composition.

The work herein builds …


Aqueous Raft Synthesis Of Stimuli-Responsive, Amphiphilic Block Copolymers And Self-Assembly Behavior In Solution And Incorporation Into Lbl Films, Matthew Grady Kellum May 2010

Aqueous Raft Synthesis Of Stimuli-Responsive, Amphiphilic Block Copolymers And Self-Assembly Behavior In Solution And Incorporation Into Lbl Films, Matthew Grady Kellum

Dissertations

Of all the living radical polymerization techniques, reversible addition– fragmentation chain transfer (RAFT) polymerization is arguably the most versatile in terms of the reaction conditions (e.g. temperature and solvent selection), monomer selection (e.g. neutral, anionic, cationic, and zwitterionic), and purification. Since the introduction of RAFT in 1998, the McCormick research group and others including the Lowe, Sumerlin, and Davis research groups have synthesized a wide range of (co)polymers with predetermined molecular weights, low polydispersities, and advanced architectures utilizing aqueous RAFT (ARAFT) polymerization. These research groups have also studied how various block copolymers exhibit stimuli-responsive behavior due to a change in …


Synthesis Of Functional Copolymers Via Aqueous Raft Polymerization For Bioconjugation And Targeted Delivery Of Small Interfering Rna, Adam Wesley York May 2010

Synthesis Of Functional Copolymers Via Aqueous Raft Polymerization For Bioconjugation And Targeted Delivery Of Small Interfering Rna, Adam Wesley York

Dissertations

The versatility of reversible addition-fragmentation chain transfer (RAFT) polymerization has moved this controlled radical technique to the forefront of copolymer construction for bioapplications including polymeric drug/gene delivery vehicles. Strengths of the RAFT process include the capacity to control the polymerization of a wide variety of vinyl monomers under mild conditions, its tolerance to numerous chemical groups that allow the preparation of functional copolymers for facile modification, and the range of copolymer architectures with predetermined end group functionalities which may be synthesized. Given these strengths, RAFT polymerization was utilized in this research to synthesize functional/reactive copolymers for bioconjugation and targeted delivery …