Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optimization

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 625

Full-Text Articles in Physical Sciences and Mathematics

Assessing Extant Methods For Generating G-Optimal Designs And A Novel Methodology To Compute The G-Score Of A Candidate Design, Hyrum John Hansen May 2024

Assessing Extant Methods For Generating G-Optimal Designs And A Novel Methodology To Compute The G-Score Of A Candidate Design, Hyrum John Hansen

All Graduate Theses and Dissertations, Fall 2023 to Present

Experimental designs are used by scientists to allocate treatments such that statistical inference is appropriate. Most traditional experimental designs have mathematical properties that make them desirable under certain conditions. Optimal experimental designs are those where the researcher can exercise total control over the treatment levels to maximize a chosen mathematical property. As is common in literature, the experimental design is represented as a matrix where each column represents a variable, and each row represents a trial. We define a function that takes as input the design matrix and outputs its score. We then algorithmically adjust each entry until a design …


Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen May 2024

Sequential Optimization For Stressor-Informed Test Planning Through Integration Of Experimental And Simulated Data, Jacob Brecheisen

Data Science Undergraduate Honors Theses

This technical report details an innovative approach in reliability engineering aimed at maximizing system durability through a synergistic use of physical experimentation and computer-based modeling. Our methodology explores the efficient design and analysis of computer experiments and physical tests to facilitate accelerated reliability growth, while leveraging a sequential integration of data from these two distinct sources: costly physical experiments, characterized by random errors, and inexpensive computer simulations, marked by inherent systematic errors. The key innovation lies in the adoption of a closed-loop design and analysis method. This method begins by identifying a viable subset of important environmental stressors—such as temperature, …


Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks Apr 2024

Modeling And Numerical Analysis Of The Cholesteric Landau-De Gennes Model, Andrew L. Hicks

LSU Doctoral Dissertations

This thesis gives an analysis of modeling and numerical issues in the Landau-de Gennes (LdG) model of nematic liquid crystals (LCs) with cholesteric effects. We derive various time-step restrictions for a (weighted) $L^2$ gradient flow scheme to be energy decreasing. Furthermore, we prove a mesh size restriction, for finite element discretizations, that is critical to avoid spurious numerical artifacts in discrete minimizers that is not well-known in the LC literature, particularly when simulating cholesteric LCs that exhibit ``twist''. Furthermore, we perform a computational exploration of the model and present several numerical simulations in 3-D, on both slab geometries and spherical …


Milp Modeling Of Matrix Multiplication: Cryptanalysis Of Klein And Prince, Murat Burhan İlter, Ali Aydın Selçuk Feb 2024

Milp Modeling Of Matrix Multiplication: Cryptanalysis Of Klein And Prince, Murat Burhan İlter, Ali Aydın Selçuk

Turkish Journal of Electrical Engineering and Computer Sciences

Mixed-integer linear programming (MILP) techniques are widely used in cryptanalysis, aiding in the discovery of optimal linear and differential characteristics. This paper delves into the analysis of block ciphers KLEIN and PRINCE using MILP, specifically calculating the best linear and differential characteristics for reduced-round versions. Both ciphers employ matrix multiplication in their diffusion layers, which we model using multiple XOR operations. To this end, we propose two novel MILP models for multiple XOR operations, which use fewer variables and constraints, proving to be more efficient than standard methods for XOR modeling. For differential cryptanalysis, we identify characteristics with a probability …


Complete Solution Of The Lady In The Lake Scenario, Alexander Von Moll, Meir Pachter Jan 2024

Complete Solution Of The Lady In The Lake Scenario, Alexander Von Moll, Meir Pachter

Faculty Publications

In the Lady in the Lake scenario, a mobile agent, L, is pitted against an agent, M, who is constrained to move along the perimeter of a circle. L is assumed to begin inside the circle and wishes to escape to the perimeter with some finite angular separation from M at the perimeter. This scenario has, in the past, been formulated as a zero-sum differential game wherein L seeks to maximize terminal separation and M seeks to minimize it. Its solution is well-known. However, there is a large portion of the state space for which the canonical solution does not …


Energy Consumption Optimization Of Uav-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning, Xiangjie Kong, Chenhao Ni, Gaohui Duan, Guojiang Shen, Yao Yang, Sajal K. Das Jan 2024

Energy Consumption Optimization Of Uav-Assisted Traffic Monitoring Scheme With Tiny Reinforcement Learning, Xiangjie Kong, Chenhao Ni, Gaohui Duan, Guojiang Shen, Yao Yang, Sajal K. Das

Computer Science Faculty Research & Creative Works

Unmanned Aerial Vehicles (UAVs) can capture pictures of road conditions in all directions and from different angles by carrying high-definition cameras, which helps gather relevant road data more effectively. However, due to their limited energy capacity, drones face challenges in performing related tasks for an extended period. Therefore, a crucial concern is how to plan the path of UAVs and minimize energy consumption. To address this problem, we propose a multi-agent deep deterministic policy gradient based (MADDPG) algorithm for UAV path planning (MAUP). Considering the energy consumption and memory usage of MAUP, we have conducted optimizations to reduce consumption on …


Preliminary Study On The Effects Of Vinegar As Pre- Treatment For The Oven-Drying Of Pacific Yellowtail Emperor (Lethrinus Atkinsoni) Fillets, Nurisa A. Suhaili, Rafael S. Jamih, Normina A. Abubakar, Jaro O. Ajik, Merilyn Q. Amlani Jan 2024

Preliminary Study On The Effects Of Vinegar As Pre- Treatment For The Oven-Drying Of Pacific Yellowtail Emperor (Lethrinus Atkinsoni) Fillets, Nurisa A. Suhaili, Rafael S. Jamih, Normina A. Abubakar, Jaro O. Ajik, Merilyn Q. Amlani

ASEAN Journal on Science and Technology for Development

This study aimed to assess the impact of various vinegar compositions used as pre-treatment for Pacific Yellowtail Emperor (PYE) fillets during the oven-drying process, with a focus on moisture content and optimal drying conditions. Two types of commercially available vinegar, Superior Vinegar and Datu Puti Vinegar, were compared, and different drying temperatures were evaluated. The investigation revealed that the drying temperature significantly influenced the moisture content of the dried PYE fillets. Among the tested temperatures (40°C, 60°C, and 80°C), the most favorable outcome in terms of moisture content was achieved when fillets were dried at 80°C for a duration of …


Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao Jan 2024

Segac: Sample Efficient Generalized Actor Critic For The Stochastic On-Time Arrival Problem, Honglian Guo, Zhi He, Wenda Sheng, Zhiguang Cao, Yingjie Zhou, Weinan Gao

Research Collection School Of Computing and Information Systems

This paper studies the problem in transportation networks and introduces a novel reinforcement learning-based algorithm, namely. Different from almost all canonical sota solutions, which are usually computationally expensive and lack generalizability to unforeseen destination nodes, segac offers the following appealing characteristics. segac updates the ego vehicle’s navigation policy in a sample efficient manner, reduces the variance of both value network and policy network during training, and is automatically adaptive to new destinations. Furthermore, the pre-trained segac policy network enables its real-time decision-making ability within seconds, outperforming state-of-the-art sota algorithms in simulations across various transportation networks. We also successfully deploy segac …


Optimal Algorithm For Managing On-Campus Student Transportation, Youssef Harrath Dr. Jan 2024

Optimal Algorithm For Managing On-Campus Student Transportation, Youssef Harrath Dr.

Faculty Research & Publications

This study analyzed the transportation issues at the University of Bahrain Sakhir campus, where a bus system with an unorganized and fixed number of buses allocated each semester was in place. Data was collected through a survey, on-site observations, and student schedules to estimate the number of buses needed. The study was limited to students who require to move between buildings for academic purposes and not those who choose to ride buses for other reasons. An algorithm was designed to calculate the optimal number of buses for each time slot, and for each day. This solution could improve transportation efficiency, …


Classification In Supervised Statistical Learning With The New Weighted Newton-Raphson Method, Toma Debnath Jan 2024

Classification In Supervised Statistical Learning With The New Weighted Newton-Raphson Method, Toma Debnath

Electronic Theses and Dissertations

In this thesis, the Weighted Newton-Raphson Method (WNRM), an innovative optimization technique, is introduced in statistical supervised learning for categorization and applied to a diabetes predictive model, to find maximum likelihood estimates. The iterative optimization method solves nonlinear systems of equations with singular Jacobian matrices and is a modification of the ordinary Newton-Raphson algorithm. The quadratic convergence of the WNRM, and high efficiency for optimizing nonlinear likelihood functions, whenever singularity in the Jacobians occur allow for an easy inclusion to classical categorization and generalized linear models such as the Logistic Regression model in supervised learning. The WNRM is thoroughly investigated …


Enhancing Rice Leaf Disease Classification: A Customized Convolutional Neural Network Approach, Ammar Kamal Abasi, Sharif Naser Makhadmeh, Osama Ahmad Alomari, Mohammad Tubishat, Husam Jasim Mohammed Oct 2023

Enhancing Rice Leaf Disease Classification: A Customized Convolutional Neural Network Approach, Ammar Kamal Abasi, Sharif Naser Makhadmeh, Osama Ahmad Alomari, Mohammad Tubishat, Husam Jasim Mohammed

All Works

In modern agriculture, correctly identifying rice leaf diseases is crucial for maintaining crop health and promoting sustainable food production. This study presents a detailed methodology to enhance the accuracy of rice leaf disease classification. We achieve this by employing a Convolutional Neural Network (CNN) model specifically designed for rice leaf images. The proposed method achieved an accuracy of 0.914 during the final epoch, demonstrating highly competitive performance compared to other models, with low loss and minimal overfitting. A comparison was conducted with Transfer Learning Inception-v3 and Transfer Learning EfficientNet-B2 models, and the proposed method showed superior accuracy and performance. With …


An Improved Dandelion Optimizer Algorithm For Spam Detection: Next-Generation Email Filtering System, Mohammad Tubishat, Feras Al-Obeidat, Ali Safaa Sadiq, Seyedali Mirjalili Sep 2023

An Improved Dandelion Optimizer Algorithm For Spam Detection: Next-Generation Email Filtering System, Mohammad Tubishat, Feras Al-Obeidat, Ali Safaa Sadiq, Seyedali Mirjalili

All Works

Spam emails have become a pervasive issue in recent years, as internet users receive increasing amounts of unwanted or fake emails. To combat this issue, automatic spam detection methods have been proposed, which aim to classify emails into spam and non-spam categories. Machine learning techniques have been utilized for this task with considerable success. In this paper, we introduce a novel approach to spam email detection by presenting significant advancements to the Dandelion Optimizer (DO) algorithm. The DO is a relatively new nature-inspired optimization algorithm inspired by the flight of dandelion seeds. While the DO shows promise, it faces challenges, …


Bare-Bones Based Salp Swarm Algorithm For Text Document Clustering, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, Ghazi Al-Naymat, Kamran Arshad, Sharif Naser Makhadmeh Sep 2023

Bare-Bones Based Salp Swarm Algorithm For Text Document Clustering, Mohammed Azmi Al-Betar, Ammar Kamal Abasi, Ghazi Al-Naymat, Kamran Arshad, Sharif Naser Makhadmeh

Machine Learning Faculty Publications

Text Document Clustering (TDC) is a challenging optimization problem in unsupervised machine learning and text mining. The Salp Swarm Algorithm (SSA) has been found to be effective in solving complex optimization problems. However, the SSA’s exploitation phase requires improvement to solve the TDC problem effectively. In this paper, we propose a new approach, known as the Bare-Bones Salp Swarm Algorithm (BBSSA), which leverages Gaussian search equations, inverse hyperbolic cosine control strategies, and greedy selection techniques to create new individuals and guide the population towards solving the TDC problem. We evaluated the performance of the BBSSA on six benchmark datasets from …


A Multi-Layer Information Dissemination Model And Interference Optimization Strategy For Communication Networks In Disaster Areas, Yuexia Zhang, Yang Hong, Mohsen Guizani, Sheng Wu, Peiying Zhang, Ruiqi Liu Aug 2023

A Multi-Layer Information Dissemination Model And Interference Optimization Strategy For Communication Networks In Disaster Areas, Yuexia Zhang, Yang Hong, Mohsen Guizani, Sheng Wu, Peiying Zhang, Ruiqi Liu

Machine Learning Faculty Publications

The communication network in disaster areas (CNDA) can disseminate the key disaster information in time and provide basic information support for decision-making and rescuing. Therefore, it is of great significance to study the information dissemination mechanism of CNDA. However, a CNDA is vulnerable to interference, which affects information dissemination and rescuing. To solve this problem, this paper established a multi-layer information dissemination model of CNDA (MMND) which models the CNDA from the perspective of degree distribution of nodes. The information dissemination process and equilibrium state in CNDA is analyzed by an improved dynamic dissemination method. Then, the effects of the …


Multi-Commodity Flow Models For Logistic Operations Within A Contested Environment, Isabel Strinsky Aug 2023

Multi-Commodity Flow Models For Logistic Operations Within A Contested Environment, Isabel Strinsky

All Theses

Today's military logistics officers face a difficult challenge, generating route plans for mass deployments within contested environments. The current method of generating route plans is inefficient and does not assess the vulnerability within supply networks and chains. There are few models within the current literature that provide risk-averse solutions for multi-commodity flow models. In this thesis, we discuss two models that have the potential to aid military planners in creating route plans that account for risk and uncertainty. The first model we introduce is a continuous time model with chance constraints. The second model is a two-stage discrete time model …


Improving The Efficiency Of Liquid-Hydrogen Simulation Via Event Storage, Jake Kosa Jul 2023

Improving The Efficiency Of Liquid-Hydrogen Simulation Via Event Storage, Jake Kosa

Physics and Astronomy Summer Fellows

We contributed to the analysis of gamma-ray spectroscopy data collected at the Facility for Rare Isotope Beams at Michigan State University by speeding up the UCGretina simulation code, used in the analysis and planning of experiments. Simulating beam-target interactions in a liquid-hydrogen target system is a time intensive task, even when parallelized. In the process of analyzing data, a large number of simulations must be run for different gamma-ray energies, target positions, and lifetimes of excited states. We are addressing the most computationally intensive component of the simulations by adding the ability to simulate a large sample of beam particles …


Corruption-Tolerant Algorithms For Generalized Linear Models, Bhaskar Mukhoty, Debojyoti Dey, Purushottam Kar Jun 2023

Corruption-Tolerant Algorithms For Generalized Linear Models, Bhaskar Mukhoty, Debojyoti Dey, Purushottam Kar

Machine Learning Faculty Publications

This paper presents SVAM (Sequential Variance-Altered MLE), a unified framework for learning generalized linear models under adversarial label corruption in training data. SVAM extends to tasks such as least squares regression, logistic regression, and gamma regression, whereas many existing works on learning with label corruptions focus only on least squares regression. SVAM is based on a novel variance reduction technique that may be of independent interest and works by iteratively solving weighted MLEs over variance-altered versions of the GLM objective. SVAM offers provable model recovery guarantees superior to the state-of-the-art for robust regression even when a constant fraction of training …


Optimal Ordering To Maximize Mev Arbitrage, Granton Michael White Jun 2023

Optimal Ordering To Maximize Mev Arbitrage, Granton Michael White

Theses and Dissertations

The rise of cryptocurrencies has brought with it new math problems with new sets of constraints. The MEV problem entails solving for the ordering of pending trades that maximizes a block creator's profit. In decentralized finance, time is a big constraint, so an exhaustive search of all possible orderings is impossible. I propose a solution to the MEV problem that gives a near optimal result that can be solved in a reasonable amount of time. I layout the method and the formulas required for my solution. Additionally, I test my solution on synthesized data to show that it works as …


Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young Jun 2023

Novel Approach For Non-Invasive Prediction Of Body Shape And Habitus, Emma Young

Electronic Theses and Dissertations

While marker-based motion capture remains the gold standard in measuring human movement, accuracy is influenced by soft-tissue artifacts, particularly for subjects with high body mass index (BMI) where markers are not placed close to the underlying bone. Obesity influences joint loads and motion patterns, and BMI may not be sufficient to capture the distribution of a subject’s weight or to differentiate differences between subjects. Subjects in need of a joint replacement are more likely to have mobility issues or pain, which prevents exercise. Obesity also increases the likelihood of needing a total joint replacement. Accurate movement data for subjects with …


Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga Jun 2023

Distributed Control Of Servicing Satellite Fleet Using Horizon Simulation Framework, Scott Plantenga

Master's Theses

On-orbit satellite servicing is critical to maximizing space utilization and sustainability and is of growing interest for commercial, civil, and defense applications. Reliance on astronauts or anchored robotic arms for the servicing of next-generation large, complex space structures operating beyond Low Earth Orbit is impractical. Substantial literature has investigated the mission design and analysis of robotic servicing missions that utilize a single servicing satellite to approach and service a single target satellite. This motivates the present research to investigate a fleet of servicing satellites performing several operations for a large, central space structure.

This research leverages a distributed control approach, …


Where Is My Spot? Few-Shot Image Generation Via Latent Subspace Optimization, Chenxi Zheng, Bangzhen Liu, Huaidong Zhang, Xuemiao Xu, Shengfeng He Jun 2023

Where Is My Spot? Few-Shot Image Generation Via Latent Subspace Optimization, Chenxi Zheng, Bangzhen Liu, Huaidong Zhang, Xuemiao Xu, Shengfeng He

Research Collection School Of Computing and Information Systems

Image generation relies on massive training data that can hardly produce diverse images of an unseen category according to a few examples. In this paper, we address this dilemma by projecting sparse few-shot samples into a continuous latent space that can potentially generate infinite unseen samples. The rationale behind is that we aim to locate a centroid latent position in a conditional StyleGAN, where the corresponding output image on that centroid can maximize the similarity with the given samples. Although the given samples are unseen for the conditional StyleGAN, we assume the neighboring latent subspace around the centroid belongs to …


Strategic Planning For Flexible Agent Availability In Large Taxi Fleets, Rajiv Ranjan Kumar, Pradeep Varakantham, Shih-Fen Cheng Jun 2023

Strategic Planning For Flexible Agent Availability In Large Taxi Fleets, Rajiv Ranjan Kumar, Pradeep Varakantham, Shih-Fen Cheng

Research Collection School Of Computing and Information Systems

In large scale multi-agent systems like taxi fleets, individual agents (taxi drivers) are self interested (maximizing their own profits) and this can introduce inefficiencies in the system. One such inefficiency is with regards to the "required" availability of taxis at different time periods during the day. Since a taxi driver can work for limited number of hours in a day (e.g., 8-10 hours in a city like Singapore), there is a need to optimize the specific hours, so as to maximize individual as well as social welfare. Technically, this corresponds to solving a large scale multi-stage selfish routing game with …


Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi May 2023

Deep Hybrid Modeling Of Neuronal Dynamics Using Generative Adversarial Networks, Soheil Saghafi

Dissertations

Mechanistic modeling and machine learning methods are powerful techniques for approximating biological systems and making accurate predictions from data. However, when used in isolation these approaches suffer from distinct shortcomings: model and parameter uncertainty limit mechanistic modeling, whereas machine learning methods disregard the underlying biophysical mechanisms. This dissertation constructs Deep Hybrid Models that address these shortcomings by combining deep learning with mechanistic modeling. In particular, this dissertation uses Generative Adversarial Networks (GANs) to provide an inverse mapping of data to mechanistic models and identifies the distributions of mechanistic model parameters coherent to the data.

Chapter 1 provides background information on …


Creating The Optimal Wedding Seating Chart, Madison Lane May 2023

Creating The Optimal Wedding Seating Chart, Madison Lane

Theses/Capstones/Creative Projects

The purpose of this project is to develop an effective seating arrangement for a wedding reception that enhances the comfort of guests. The ultimate aim is to create a harmonious and enjoyable atmosphere for all attendees. To achieve this, an integer program was designed to optimize the seating arrangement for the author’s upcoming wedding on May 27th, 2023. To ensure accuracy and feasibility, actual feedback was gathered from the guests to evaluate their compatibility and preferences. The proposed seating chart optimization not only addresses the placement of guests but also determines the number of tables required for the reception. The …


Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno May 2023

Addressing The Challenged Of Dcop Based Decision-Making Algorithms In Modern Power Systems, Luis Daniel Ramirez Burgueno

Open Access Theses & Dissertations

Natural disasters have been determined as the leading cause of power outages, causing not only huge economic losses, but also the interruption of crucial welfare activities and the arise of security concerns. Because of the later, decision-making considering grid modernization, power system economics, and system resiliency has been a crucial theme in power systemsâ?? research. The need to better withstand catastrophic events and reducing the dependency of bulky generating units has propelled the development and better management of behind-the-meter generation or distributed energy resources (DERs). DERs can assist in the grid in different manners, not only by meeting energy demand …


A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Oriented Crossover In Genetic Algorithms For Computer Networks Optimization, Furkan Rabee, Zahir M. Hussain May 2023

Oriented Crossover In Genetic Algorithms For Computer Networks Optimization, Furkan Rabee, Zahir M. Hussain

Research outputs 2022 to 2026

Optimization using genetic algorithms (GA) is a well-known strategy in several scientific disciplines. The crossover is an essential operator of the genetic algorithm. It has been an active area of research to develop sustainable forms for this operand. In this work, a new crossover operand is proposed. This operand depends on giving an elicited description for the chromosome with a new structure for alleles of the parents. It is suggested that each allele has two attitudes, one attitude differs contrastingly with the other, and both of them complement the allele. Thus, in case where one attitude is good, the other …


Uconn Baseball Batting Order Optimization, Gavin Rublewski, Gavin Rublewski May 2023

Uconn Baseball Batting Order Optimization, Gavin Rublewski, Gavin Rublewski

Honors Scholar Theses

Challenging conventional wisdom is at the very core of baseball analytics. Using data and statistical analysis, the sets of rules by which coaches make decisions can be justified, or possibly refuted. One of those sets of rules relates to the construction of a batting order. Through data collection, data adjustment, the construction of a baseball simulator, and the use of a Monte Carlo Simulation, I have assessed thousands of possible batting orders to determine the roster-specific strategies that lead to optimal run production for the 2023 UConn baseball team. This paper details a repeatable process in which basic player statistics …


Loss Scaling And Step Size In Deep Learning Optimizatio, Nora Alosily Apr 2023

Loss Scaling And Step Size In Deep Learning Optimizatio, Nora Alosily

Dissertations

Deep learning training consumes ever-increasing time and resources, and that is
due to the complexity of the model, the number of updates taken to reach good
results, and both the amount and dimensionality of the data. In this dissertation,
we will focus on making the process of training more efficient by focusing on the
step size to reduce the number of computations for parameters in each update.
We achieved our objective in two new ways: we use loss scaling as a proxy for
the learning rate, and we use learnable layer-wise optimizers. Although our work
is perhaps not the first …


Multilevel Optimization With Dropout For Neural Networks, Gary Joseph Saavedra Apr 2023

Multilevel Optimization With Dropout For Neural Networks, Gary Joseph Saavedra

Mathematics & Statistics ETDs

Large neural networks have become ubiquitous in machine learning. Despite their widespread use, the optimization process for training a neural network remains com-putationally expensive and does not necessarily create networks that generalize well to unseen data. In addition, the difficulty of training increases as the size of the neural network grows. In this thesis, we introduce the novel MGDrop and SMGDrop algorithms which use a multigrid optimization scheme with a dropout coarsening operator to train neural networks. In contrast to other standard neural network training schemes, MGDrop explicitly utilizes information from smaller sub-networks which act as approximations of the full …