Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1198

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning Models Interpretability For Malware Detection Using Model Agnostic Language For Exploration And Explanation, Ikuromor Mabel Ogiriki Jan 2023

Machine Learning Models Interpretability For Malware Detection Using Model Agnostic Language For Exploration And Explanation, Ikuromor Mabel Ogiriki

Theses and Dissertations

The adoption of the internet as a global platform has birthed a significant rise in cyber-attacks of various forms ranging from Trojans, worms, spyware, ransomware, botnet malware, rootkit, etc. In order to tackle the issue of all these forms of malware, there is a need to understand and detect them. There are various methods of detecting malware which include signature, behavioral, and machine learning. Machine learning methods have proven to be the most efficient of all for malware detection. In this thesis, a system that utilizes both the signature and dynamic behavior-based detection techniques, with the added layer of the …


Predictors Of Covid-19 Vaccination Rate In Usa: A Machine Learning Approach, Syed M. I. Osman, Ahmed Sabit Dec 2022

Predictors Of Covid-19 Vaccination Rate In Usa: A Machine Learning Approach, Syed M. I. Osman, Ahmed Sabit

WCBT Faculty Publications

In this study, we examine state-level features and policies that are most important in achieving a threshold level vaccination rate to curve the effects of the COVID-19 pandemic. We employ CHAID, a decision tree algorithm, on three different model specifications to answer this question based on a dataset that includes all the states in the United States. Workplace travel emerges as the most important predictor; however, the governors’ political affiliation (PA) replaces it in a more conservative feature set that includes economic features and the growth rate of COVID-19 cases. We also employ several alternative algorithms as a robustness check. …


The Interaction Of Normalisation And Clustering In Sub-Domain Definition For Multi-Source Transfer Learning Based Time Series Anomaly Detection, Matthew Nicholson, Rahul Agrahari, Clare Conran, Haythem Assem, John D. Kelleher Dec 2022

The Interaction Of Normalisation And Clustering In Sub-Domain Definition For Multi-Source Transfer Learning Based Time Series Anomaly Detection, Matthew Nicholson, Rahul Agrahari, Clare Conran, Haythem Assem, John D. Kelleher

Articles

This paper examines how data normalisation and clustering interact in the definition of sub-domains within multi-source transfer learning systems for time series anomaly detection. The paper introduces a distinction between (i) clustering as a primary/direct method for anomaly detection, and (ii) clustering as a method for identifying sub-domains within the source or target datasets. Reporting the results of three sets of experiments, we find that normalisation after feature extraction and before clustering results in the best performance for anomaly detection. Interestingly, we find that in the multi-source transfer learning scenario clustering on the target dataset and identifying subdomains in the …


Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw Dec 2022

Towards Reinterpreting Neural Topic Models Via Composite Activations, Jia Peng Lim, Hady Wirawan Lauw

Research Collection School Of Computing and Information Systems

Most Neural Topic Models (NTM) use a variational auto-encoder framework producing K topics limited to the size of the encoder’s output. These topics are interpreted through the selection of the top activated words via the weights or reconstructed vector of the decoder that are directly connected to each neuron. In this paper, we present a model-free two-stage process to reinterpret NTM and derive further insights on the state of the trained model. Firstly, building on the original information from a trained NTM, we generate a pool of potential candidate “composite topics” by exploiting possible co-occurrences within the original set of …


Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen Dec 2022

Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen

Doctoral Dissertations

Turbulence is ubiquitous in life —from biology to astrophysics. The best direct numeric simulations (DNS) have only been benchmarked against low resolution, time-averaged experimental configurations—partly because of limitations in computing power. With time, computing power has greatly increased, so there is need for higher quality data of turbulent flow. In this dissertation, we explore a solution that enables quantitative visualization measurement of the velocity field in liquid helium, which has the potential of breaking new ground for high Reynolds number turbulence research and model testing.

Our technique involves creation of clouds of molecular tracers using 3He-neutron absorption reaction in liquid …


The Role Of Radiomics And Ai Technologies In The Segmentation, Detection, And Management Of Hepatocellular Carcinoma, Dalia Fahmy, Ahmed Alksas, Ahmed Elnakib, Ali Mahmoud, Heba Kandil, Ashraf Khalil, Mohammed Ghazal, Eric Van Bogaert, Sohail Contractor, Ayman El-Baz Dec 2022

The Role Of Radiomics And Ai Technologies In The Segmentation, Detection, And Management Of Hepatocellular Carcinoma, Dalia Fahmy, Ahmed Alksas, Ahmed Elnakib, Ali Mahmoud, Heba Kandil, Ashraf Khalil, Mohammed Ghazal, Eric Van Bogaert, Sohail Contractor, Ayman El-Baz

All Works

Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning.


Predicting The Stability Of Open Stopes Using Machine Learning, Alicja Szmigiel, Derek B. Apel Nov 2022

Predicting The Stability Of Open Stopes Using Machine Learning, Alicja Szmigiel, Derek B. Apel

Journal of Sustainable Mining

The Mathews stability graph method was presented for the first time in 1980. This method was developed to assess the stability of open stopes in different underground conditions, and it has an impact on evaluating the safety of underground excavations. With the development of technology and growing experience in applying computer sciences in various research disciplines, mining engineering could significantly benefit by using Machine Learning. Applying those ML algorithms to predict the stability of open stopes in underground excavations is a new approach that could replace the original graph method and should be investigated. In this research, a Potvin database …


A Review Of Risk Concepts And Models For Predicting The Risk Of Primary Stroke, Elizabeth Hunter, John D. Kelleher Nov 2022

A Review Of Risk Concepts And Models For Predicting The Risk Of Primary Stroke, Elizabeth Hunter, John D. Kelleher

Articles

Predicting an individual's risk of primary stroke is an important tool that can help to lower the burden of stroke for both the individual and society. There are a number of risk models and risk scores in existence but no review or classification designed to help the reader better understand how models differ and the reasoning behind these differences. In this paper we review the existing literature on primary stroke risk prediction models. From our literature review we identify key similarities and differences in the existing models. We find that models can differ in a number of ways, including the …


Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei Lim, Gottipati Swapna, Kyong Jin Shim Nov 2022

Investigating Bloom's Cognitive Skills In Foundation And Advanced Programming Courses From Students' Discussions, Joel Jer Wei Lim, Gottipati Swapna, Kyong Jin Shim

Research Collection School Of Computing and Information Systems

Programming courses provide students with the skills to develop complex business applications. Teaching and learning programming is challenging, and collaborative learning is proposed to help with this challenge. Online discussion forums promote networking with other learners such that they can build knowledge collaboratively. It aids students open their horizons of thought processes to acquire cognitive skills. Cognitive analysis of discussion is critical to understand students' learning process. In this paper, we propose Bloom's taxonomy based cognitive model for programming discussion forums. We present machine learning (ML) based solution to extract students' cognitive skills. Our evaluations on compupting courses show that …


Emotion Quantification Using Variational Quantum State Fidelity Estimation, Jaiteg Singh, Farman Ali, Babar Shah, Kamalpreet Singh Bhangu, Daehan Kwak Oct 2022

Emotion Quantification Using Variational Quantum State Fidelity Estimation, Jaiteg Singh, Farman Ali, Babar Shah, Kamalpreet Singh Bhangu, Daehan Kwak

All Works

Sentiment analysis has been instrumental in developing artificial intelligence when applied to various domains. However, most sentiments and emotions are temporal and often exist in a complex manner. Several emotions can be experienced at the same time. Instead of recognizing only categorical information about emotions, there is a need to understand and quantify the intensity of emotions. The proposed research intends to investigate a quantum-inspired approach for quantifying emotional intensities in runtime. The inspiration comes from manifesting human cognition and decision-making capabilities, which may adopt a brief explanation through quantum theory. Quantum state fidelity was used to characterize states and …


Potential Of Vision Transformers For Advanced Driver-Assistance Systems: An Evaluative Approach, Andrew Katoch Oct 2022

Potential Of Vision Transformers For Advanced Driver-Assistance Systems: An Evaluative Approach, Andrew Katoch

Electronic Thesis and Dissertation Repository

In this thesis, we examine the performance of Vision Transformers concerning the current state of Advanced Driving Assistance Systems (ADAS). We explore the Vision Transformer model and its variants on the problems of vehicle computer vision. Vision transformers show performance competitive to convolutional neural networks but require much more training data. Vision transformers are also more robust to image permutations than CNNs. Additionally, Vision Transformers have a lower pre-training compute cost but can overfit on smaller datasets more easily than CNNs. Thus we apply this knowledge to tune Vision transformers on ADAS image datasets, including general traffic objects, vehicles, traffic …


Improving Protein Succinylation Sites Prediction Using Embeddings From Protein Language Model, Suresh Pokharel, Pawel Pratyush, Michael Heinzinger, Robert H. Newman, Dukka Kc Oct 2022

Improving Protein Succinylation Sites Prediction Using Embeddings From Protein Language Model, Suresh Pokharel, Pawel Pratyush, Michael Heinzinger, Robert H. Newman, Dukka Kc

Michigan Tech Publications

Protein succinylation is an important post-translational modification (PTM) responsible for many vital metabolic activities in cells, including cellular respiration, regulation, and repair. Here, we present a novel approach that combines features from supervised word embedding with embedding from a protein language model called ProtT5-XL-UniRef50 (hereafter termed, ProtT5) in a deep learning framework to predict protein succinylation sites. To our knowledge, this is one of the first attempts to employ embedding from a pre-trained protein language model to predict protein succinylation sites. The proposed model, dubbed LMSuccSite, achieves state-of-the-art results compared to existing methods, with performance scores of 0.36, 0.79, 0.79 …


Unsupervised Machine Learning Approaches To Nuclear Particle Type Classification, Daniel Ruiz, Nicholas Liebers, Jacob Huckelberry, David Fobar, Peter Chapman Oct 2022

Unsupervised Machine Learning Approaches To Nuclear Particle Type Classification, Daniel Ruiz, Nicholas Liebers, Jacob Huckelberry, David Fobar, Peter Chapman

West Point Research Papers

Historically, nuclear science and radiation detection fields of research used Pulse Shape Discrimination (PSD) to label gamma-ray and neutron interactions. However, PSD’s effectiveness relies greatly on the existence of distinguishable differences in an interaction’s measured pulse shape. In the fields of machine learning and data analytics, clustering algorithms provide ways to group samples with similar features without the need for labels. Clustering gamma-ray and neutron interactions may mitigate PSD’s pitfalls, since clustering methods view the total waveform rather than just the area under the tail and the total area under the pulse. However, traditional clustering methods, such as the k-means …


An Approach For Improved Students’ Performance Prediction Using Homogeneous And Heterogeneous Ensemble Methods, Edmund De Leon Evangelista, Benedict Descargar Sy Oct 2022

An Approach For Improved Students’ Performance Prediction Using Homogeneous And Heterogeneous Ensemble Methods, Edmund De Leon Evangelista, Benedict Descargar Sy

All Works

Web-based learning technologies of educational institutions store a massive amount of interaction data which can be helpful to predict students’ performance through the aid of machine learning algorithms. With this, various researchers focused on studying ensemble learning methods as it is known to improve the predictive accuracy of traditional classification algorithms. This study proposed an approach for enhancing the performance prediction of different single classification algorithms by using them as base classifiers of homogeneous ensembles (bagging and boosting) and heterogeneous ensembles (voting and stacking). The model utilized various single classifiers such as multilayer perceptron or neural networks (NN), random forest …


A Simpler Machine Learning Model For Acute Kidney Injury Risk Stratification In Hospitalized Patients, Yirui Hu, Kunpeng Liu, Kevin Ho, David Riviello, Jason Brown, Alex R. Chang, Gurmukteshwar Singh, H. Lester Kirchner Oct 2022

A Simpler Machine Learning Model For Acute Kidney Injury Risk Stratification In Hospitalized Patients, Yirui Hu, Kunpeng Liu, Kevin Ho, David Riviello, Jason Brown, Alex R. Chang, Gurmukteshwar Singh, H. Lester Kirchner

Computer Science Faculty Publications and Presentations

Background: Hospitalization-associated acute kidney injury (AKI), affecting one-in-five inpatients, is associated with increased mortality and major adverse cardiac/kidney endpoints. Early AKI risk stratification may enable closer monitoring and prevention. Given the complexity and resource utilization of existing machine learning models, we aimed to develop a simpler prediction model. Methods: Models were trained and validated to predict risk of AKI using electronic health record (EHR) data available at 24 h of inpatient admission. Input variables included demographics, laboratory values, medications, and comorbidities. Missing values were imputed using multiple imputation by chained equations. Results: 26,410 of 209,300 (12.6%) inpatients developed AKI during …


Predicting The Level Of Respiratory Support In Covid-19 Patients Using Machine Learning, Hisham Abdeltawab, Fahmi Khalifa, Yaser Elnakieb, Ahmed Elnakib, Fatma Taher, Norah Saleh Alghamdi, Harpal Singh Sandhu, Ayman El-Baz Oct 2022

Predicting The Level Of Respiratory Support In Covid-19 Patients Using Machine Learning, Hisham Abdeltawab, Fahmi Khalifa, Yaser Elnakieb, Ahmed Elnakib, Fatma Taher, Norah Saleh Alghamdi, Harpal Singh Sandhu, Ayman El-Baz

All Works

In this paper, a machine learning-based system for the prediction of the required level of respiratory support in COVID-19 patients is proposed. The level of respiratory support is divided into three classes: class 0 which refers to minimal support, class 1 which refers to non-invasive support, and class 2 which refers to invasive support. A two-stage classification system is built. First, the classification between class 0 and others is performed. Then, the classification between class 1 and class 2 is performed. The system is built using a dataset collected retrospectively from 3491 patients admitted to tertiary care hospitals at the …


Evaluation Of Machine Learning Algorithm On Drinking Water Quality For Better Sustainability, Sanaa Kaddoura Sep 2022

Evaluation Of Machine Learning Algorithm On Drinking Water Quality For Better Sustainability, Sanaa Kaddoura

All Works

Water has become intricately linked to the United Nations' sixteen sustainable development goals. Access to clean drinking water is crucial for health, a fundamental human right, and a component of successful health protection policies. Clean water is a significant health and development issue on a national, regional, and local level. Investments in water supply and sanitation have been shown to produce a net economic advantage in some areas because they reduce adverse health effects and medical expenses more than they cost to implement. However, numerous pollutants are affecting the quality of drinking water. This study evaluates the efficiency of using …


Enabling Rapid Chemical Analysis Of Plutonium Alloys Via Machine Learning-Enhanced Atomic Spectroscopy Techniques, Ashwin P. Rao Sep 2022

Enabling Rapid Chemical Analysis Of Plutonium Alloys Via Machine Learning-Enhanced Atomic Spectroscopy Techniques, Ashwin P. Rao

Theses and Dissertations

Analytical atomic spectroscopy methods have the potential to provide solutions for rapid, high fidelity chemical analysis of plutonium alloys. Implementing these methods with advanced analytical techniques can help reduce the chemical analysis time needed for plutonium pit production, directly enabling the 80 pit-per-year by 2030 manufacturing goal outlined in the 2018 Nuclear Posture Review. Two commercial, handheld elemental analyzers were validated for potential in situ analysis of Pu. A handheld XRF device was able to detect gallium in a Pu surrogate matrix with a detection limit of 0.002 wt% and a mean error of 8%. A handheld LIBS device was …


Using Deep Learning To Detect Social Media ‘Trolls’, Áine Macdermott, Michal Motylinski, Farkhund Iqbal, Kellyann Stamp, Mohammed Hussain, Andrew Marrington Sep 2022

Using Deep Learning To Detect Social Media ‘Trolls’, Áine Macdermott, Michal Motylinski, Farkhund Iqbal, Kellyann Stamp, Mohammed Hussain, Andrew Marrington

All Works

Detecting criminal activity online is not a new concept but how it can occur is changing. Technology and the influx of social media applications and platforms has a vital part to play in this changing landscape. As such, we observe an increasing problem with cyber abuse and ‘trolling’/toxicity amongst social media platforms sharing stories, posts, memes sharing content. In this paper we present our work into the application of deep learning techniques for the detection of ‘trolls’ and toxic content shared on social media platforms. We propose a machine learning solution for the detection of toxic images based on embedded …


Leveraging Subject Matter Expertise To Optimize Machine Learning Techniques For Air And Space Applications, Philip Y. Cho Sep 2022

Leveraging Subject Matter Expertise To Optimize Machine Learning Techniques For Air And Space Applications, Philip Y. Cho

Theses and Dissertations

We develop new machine learning and statistical methods that are tailored for Air and Space applications through the incorporation of subject matter expertise. In particular, we focus on three separate research thrusts that each represents a different type of subject matter knowledge, modeling approach, and application. In our first thrust, we incorporate knowledge of natural phenomena to design a neural network algorithm for localizing point defects in transmission electron microscopy (TEM) images of crystalline materials. In our second research thrust, we use Bayesian feature selection and regression to analyze the relationship between fighter pilot attributes and flight mishap rates. We …


How Facial Features Convey Attention In Stationary Environments, Janelle Domantay, Brendan Morris Aug 2022

How Facial Features Convey Attention In Stationary Environments, Janelle Domantay, Brendan Morris

Spectra Undergraduate Research Journal

Awareness detection technologies have been gaining traction in a variety of enterprises; most often used for driver fatigue detection, recent research has shifted towards using computer vision technologies to analyze user attention in environments such as online classrooms. This paper aims to extend previous research on distraction detection by analyzing which visual features contribute most to predicting awareness and fatigue. We utilized the open-source facial analysis toolkit OpenFace in order to analyze visual data of subjects at varying levels of attentiveness. Then, using a Support-Vector Machine (SVM) we created several prediction models for user attention and identified the Histogram of …


Respiratory Pattern Analysis For Covid-19 Digital Screening Using Ai Techniques, Annita Tahsin Priyoti Aug 2022

Respiratory Pattern Analysis For Covid-19 Digital Screening Using Ai Techniques, Annita Tahsin Priyoti

Electronic Thesis and Dissertation Repository

Corona Virus (COVID-19) is a highly contagious respiratory disease that the World Health Organization (WHO) has declared a worldwide epidemic. This virus has spread worldwide, affecting various countries until now, causing millions of deaths globally. To tackle this public health crisis, medical professionals and researchers are working relentlessly, applying different techniques and methods. In terms of diagnosis, respiratory sound has been recognized as an indicator of one’s health condition. Our work is based on cough sound analysis. This study has included an in-depth analysis of the diagnosis of COVID-19 based on human cough sound. Based on cough audio samples from …


Reporting Standards For Machine Learning Research In Type 2 Diabetes, Grace Kang Aug 2022

Reporting Standards For Machine Learning Research In Type 2 Diabetes, Grace Kang

Undergraduate Student Research Internships Conference

In this project, three people scored 90 papers on machine learning predictive models for type 2 diabetes to assess their adherence to TRIPOD, MI-CLAIM, and DOME reporting guidelines.


A Kuramoto Model Approach To Predicting Chaotic Systems With Echo State Networks, Sophie Wu, Jackson Howe Aug 2022

A Kuramoto Model Approach To Predicting Chaotic Systems With Echo State Networks, Sophie Wu, Jackson Howe

Undergraduate Student Research Internships Conference

An Echo State Network (ESN) with an activation function based on the Kuramoto model (Kuramoto ESN) is implemented, which can successfully predict the logistic map for a non-trivial number of time steps. The reservoir in the prediction stage exhibits binary dynamics when a good prediction is made, but the oscillators in the reservoir display a larger variability in states as the ESN’s prediction becomes worse. Analytical approaches to quantify how the Kuramoto ESN’s dynamics relate to its prediction are explored, as well as how the dynamics of the Kuramoto ESN relate to another widely studied physical model, the Ising model.


Classification Models For 2,4-D Formulations In Damaged Enlist Crops Through The Application Of Ftir Spectroscopy And Machine Learning Algorithms, Benjamin Blackburn Aug 2022

Classification Models For 2,4-D Formulations In Damaged Enlist Crops Through The Application Of Ftir Spectroscopy And Machine Learning Algorithms, Benjamin Blackburn

Theses and Dissertations

With new 2,4-Dichlorophenoxyacetic acid (2,4-D) tolerant crops, increases in off-target movement events are expected. New formulations may mitigate these events, but standard lab techniques are ineffective in identifying these 2,4-D formulations. Using Fourier-transform infrared spectroscopy and machine learning algorithms, research was conducted to classify 2,4-D formulations in treated herbicide-tolerant soybeans and cotton and observe the influence of leaf treatment status and collection timing on classification accuracy. Pooled Classification models using k-nearest neighbor classified 2,4-D formulations with over 65% accuracy in cotton and soybean. Tissue collected 14 DAT and 21 DAT for cotton and soybean respectively produced higher accuracies than the …


Artificial Intelligence In The Radiomic Analysis Of Glioblastomas: A Review, Taxonomy, And Perspective, Ming Zhu, Sijia Li, Yu Kuang, Virginia B. Hill, Amy B. Heimberger, Lijie Zhai, Shenjie Zhai Aug 2022

Artificial Intelligence In The Radiomic Analysis Of Glioblastomas: A Review, Taxonomy, And Perspective, Ming Zhu, Sijia Li, Yu Kuang, Virginia B. Hill, Amy B. Heimberger, Lijie Zhai, Shenjie Zhai

Electrical and Computer Engineering Faculty Publications

Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications …


Data Collection And Machine Learning Methods For Automated Pedestrian Facility Detection And Mensuration, Joseph Bailey Luttrell Iv Aug 2022

Data Collection And Machine Learning Methods For Automated Pedestrian Facility Detection And Mensuration, Joseph Bailey Luttrell Iv

Dissertations

Large-scale collection of pedestrian facility (crosswalks, sidewalks, etc.) presence data is vital to the success of efforts to improve pedestrian facility management, safety analysis, and road network planning. However, this kind of data is typically not available on a large scale due to the high labor and time costs that are the result of relying on manual data collection methods. Therefore, methods for automating this process using techniques such as machine learning are currently being explored by researchers. In our work, we mainly focus on machine learning methods for the detection of crosswalks and sidewalks from both aerial and street-view …


Modern Pyromes: Biogeographical Patterns Of Fire Characteristics Across The Contiguous United States, Megan E. Cattau, Adam Mahood, Jennifer K. Balch, Carol Wessman Aug 2022

Modern Pyromes: Biogeographical Patterns Of Fire Characteristics Across The Contiguous United States, Megan E. Cattau, Adam Mahood, Jennifer K. Balch, Carol Wessman

Human-Environment Systems Research Center Faculty Publications and Presentations

In recent decades, wildfires in many areas of the United States (U.S.) have become larger and more frequent with increasing anthropogenic pressure, including interactions between climate, land-use change, and human ignitions. We aimed to characterize the spatiotemporal patterns of contemporary fire characteristics across the contiguous United States (CONUS). We derived fire variables based on frequency, fire radiative power (FRP), event size, burned area, and season length from satellite-derived fire products and a government records database on a 50 km grid (1984–2020). We used k-means clustering to create a hierarchical classification scheme of areas with relatively homogeneous fire characteristics, or modern …


Directed Acyclic Graph-Based Neural Networks For Tunable Low-Power Computer Vision, Abhinav Goel, Caleb Tung, Nick Eliopoulos, Xiao Hu, George K. Thiruvathukal, James C. Davis, Yung-Hisang Lu Aug 2022

Directed Acyclic Graph-Based Neural Networks For Tunable Low-Power Computer Vision, Abhinav Goel, Caleb Tung, Nick Eliopoulos, Xiao Hu, George K. Thiruvathukal, James C. Davis, Yung-Hisang Lu

Computer Science: Faculty Publications and Other Works

Processing visual data on mobile devices has many applications, e.g., emergency response and tracking. State-of-the-art computer vision techniques rely on large Deep Neural Networks (DNNs) that are usually too power-hungry to be deployed on resource-constrained edge devices. Many techniques improve DNN efficiency of DNNs by compromising accuracy. However, the accuracy and efficiency of these techniques cannot be adapted for diverse edge applications with different hardware constraints and accuracy requirements. This paper demonstrates that a recent, efficient tree-based DNN architecture, called the hierarchical DNN, can be converted into a Directed Acyclic Graph-based (DAG) architecture to provide tunable accuracy-efficiency tradeoff options. We …


Towards Making Transformer-Based Language Models Learn How Children Learn, Yousra Mahdy Aug 2022

Towards Making Transformer-Based Language Models Learn How Children Learn, Yousra Mahdy

Boise State University Theses and Dissertations

Transformer-based Language Models (LMs), learn contextual meanings for words using a huge amount of unlabeled text data. These models show outstanding performance on various Natural Language Processing (NLP) tasks. However, what the LMs learn is far from what the meaning is for humans, partly due to the fact that humans can differentiate between concrete and abstract words, but language models make no distinction. Concrete words are words that have a physical representation in the world such as “chair”, while abstract words are ideas such as “democracy”. The process of learning word meanings starts from early childhood when children acquire their …