Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Interferometry

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 83

Full-Text Articles in Physical Sciences and Mathematics

Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen Mar 2023

Stellar Atmosphere Models For Select Veritas Stellar Intensity Interferometry Targets, Jackson Ladd Sackrider, Jason P. Aufdenberg, Katelyn Sonnen

Beyond: Undergraduate Research Journal

Since 2020 the Very Energetic Radiation Imaging Telescope Array System (VERITAS) has observed 48 stellar targets using the technique of Stellar Intensity Interferometry (SII). Angular diameter measurements by VERITAS SII (VSII) in a waveband near 400 nm complement existing angular diameter measurements in the near-infrared. VSII observations will test fundamental predictions of stellar atmosphere models and should be more sensitive to limb darkening and gravity darkening effects than measurements in the near-IR, however, the magnitude of this difference has not been systematically explored in the literature. In order to investigate the synthetic interferometric (as well as spectroscopic) appearance of stars …


Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc Jan 2023

Emission Spectroscopy Of Ingaas Quantum Dots Via High-Resolution Fabry-Perot Interferometer, Raju Bhai Kc

Graduate Theses, Dissertations, and Problem Reports

Single photons emitted from self-assembled quantum dots have been widely studied to use as a promising qubit for quantum information processing. Therefore, it is critical to fully understand the emission spectra from the quantum dot's excitation if we want to use a single photon as a quantum bit. It is almost impossible to produce rotationally symmetric quantum dots due to various growth conditions and restrictions. So the real quantum dots do not have a perfectly symmetric structure. A broken rotational symmetry causes an asymmetric exchange interaction between electron and hole, leading to a fine structure splitting between two excited states. …


Hybrid Modulated-Phase-Grating For Phase Contrast X-Ray For A Varying Fringe Period Clinical Interferometry System, Elizabeth Jeong Park Jun 2022

Hybrid Modulated-Phase-Grating For Phase Contrast X-Ray For A Varying Fringe Period Clinical Interferometry System, Elizabeth Jeong Park

LSU Master's Theses

Phase contrast x-rays are of use due to the range of imaging they can provide. Not only are they useful for attenuation they also can provide phase and small angle scatter X-ray (SAXS) information simultaneously which adds additional contrast and information to the original attention image. In prior work, a phase contrast system with Modulated Phase Grating was shown to eliminate the need for analyzer in standard Talbot Lau Xray Interferometers (TLXI). The system is clinically compatible in footprint due to its length being limited to


Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis May 2022

Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis

LSU Doctoral Dissertations

In this dissertation, I present the largest single collection of M dwarf stellar radii in over a decade and contextualize these measurements with the systematic model discrepancies. The measurements of stellar angular diameters are also important in the quantification of the properties of exoplanets. In order to estimate the property of the exoplanet, it is first necessary to quantify the properties of the planet's host star. Using the survey results complemented with previous direct observations of the angular diameters of low mass stars, I develop updated updated surface brightness relationships. These relationships allow predictions of angular diameters using easy to …


Performance Of Near-Infrared High-Contrast Imaging Methods With Jwst From Commissioning, Jens Kammerer, Julien Girard, Aarynn L. Carter, Marshall D. Perrin, Rachel Cooper, Deepashri Thatte, Thomas Vandal, Jarron Leisenring, Jason Wang, William O. Balmer, Anand Sivaramakrishnan, Laurent Pueyo, Kimberly Ward-Duong, Ben Sunnquist, Jéa Adams Redai Jan 2022

Performance Of Near-Infrared High-Contrast Imaging Methods With Jwst From Commissioning, Jens Kammerer, Julien Girard, Aarynn L. Carter, Marshall D. Perrin, Rachel Cooper, Deepashri Thatte, Thomas Vandal, Jarron Leisenring, Jason Wang, William O. Balmer, Anand Sivaramakrishnan, Laurent Pueyo, Kimberly Ward-Duong, Ben Sunnquist, Jéa Adams Redai

Astronomy: Faculty Publications

The James Webb Space Telescope (JWST) will revolutionize the field of high-contrast imaging and enable both the direct detection of Saturn-mass planets and the characterization of substellar companions in the mid-infrared. While JWST will feature unprecedented sensitivity, angular resolution will be the key factor when competing with ground-based telescopes. Here, we aim to characterize the performance of several extreme angular resolution imaging techniques available with JWST in the 3-5 µm regime based on data taken during the instrument commissioning. Firstly, we introduce custom tools to simulate, reduce, and analyze JWST NIRCam and MIRI coronagraphy data and use these tools to …


Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr Jan 2022

Charge Dynamics Of Inas Quantum Dots Under Resonant And Above-Band Excitation, Gary R. Lander Jr

Graduate Theses, Dissertations, and Problem Reports

Research involving light-matter interactions in semiconductor nanostructures has been an interesting topic of investigation for decades. Many systems have been studied for not only probing fundamental physics of the solid state, but also for direct development of technological advancements. Research regarding self-assembled, epitaxially grown quantum dots (QDs) has proven to be prominent in both regards. The development of a reliable, robust source for the production of quantum bits to be utilized in quantum information protocols is a leading venture in the world of condensed matter and solid-state physics. Fluorescence from resonantly driven QDs is a promising candidate for the production …


Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers Jan 2022

Location And Calibration Of Lightning Pulses From Lofar Radiation Measurements, Nicholas R. Demers

Honors Theses and Capstones

Lightning has the power to shock and awe as an incredible force of nature, yet so many phenomena surrounding lightning are still not well-understood. In fact, the very physics regarding what actually sparks a lightning strike remain poorly defined. In an effort to understand how lightning initiation is achieved, data collected from the Low Frequency Array in the Netherlands were calibrated and interferometry performed to map the flash in 4D space. The calibration process itself is explored, from choosing lightning sources to calibrate, to the various stages of calibration leading to a fully calibrated flash ready for interferometric analysis. Using …


Research Sites Get Closer To Field Camps Over Time: Informing Environmental Management Through A Geospatial Analysis Of Science In The Mcmurdo Dry Valleys, Antarctica, Stephen M. Chignell, Madeline E. Myers, Adrian Howkins, Andrew Fountain Nov 2021

Research Sites Get Closer To Field Camps Over Time: Informing Environmental Management Through A Geospatial Analysis Of Science In The Mcmurdo Dry Valleys, Antarctica, Stephen M. Chignell, Madeline E. Myers, Adrian Howkins, Andrew Fountain

Geology Faculty Publications and Presentations

As in many parts of the world, the management of environmental science research in Antarctica relies on cost-benefit analysis of negative environmental impact versus positive scientific gain. Several studies have examined the environmental impact of Antarctic field camps, but very little work looks at how the placement of these camps influences scientific research. In this study, we integrate bibliometrics, geospatial analysis, and historical research to understand the relationship between field camp placement and scientific production in the McMurdo Dry Valleys of East Antarctica. Our analysis of the scientific corpus from 1907–2016 shows that, on average, research sites have become less …


Interferometric Imaging Of Λ Andromedae: Evidence Of Starspots And Rotation, J. Robert Parks, Russel J. White, Frédérique Baron, John D. Monnier, Brian Kloppenborg, Gregory W. Henry, Gail Schaefer, Xiao Che, Ettore Pedretti, Nathalie Thureau, Ming Zhao, Theo Ten Brummelaar, Harold Mcalister, Stephen T. Ridgway, Nils Turner, Judit Sturmann, Laszlo Sturmann May 2021

Interferometric Imaging Of Λ Andromedae: Evidence Of Starspots And Rotation, J. Robert Parks, Russel J. White, Frédérique Baron, John D. Monnier, Brian Kloppenborg, Gregory W. Henry, Gail Schaefer, Xiao Che, Ettore Pedretti, Nathalie Thureau, Ming Zhao, Theo Ten Brummelaar, Harold Mcalister, Stephen T. Ridgway, Nils Turner, Judit Sturmann, Laszlo Sturmann

Information Systems and Engineering Management Research Publications

Presented are the first interferometric images of cool starspots on the chromospherically active giant λ Andromedae. Using the Michigan Infra-Red Combiner coupled to the Center for High Angular Resolution Astronomy Array, 26 interferometric observations were made between 2008 August 17 and 2011 September 24. The photometric time series acquired at Fairborn Observatory spanning 2008 September 20 to 2011 January 20 is also presented. The angular diameter and power-law limb-darkening coefficient of this star are 2.759 ± 0.050 mas and 0.229 ± 0.111, respectively. Starspot properties are obtained from both modeled and SQUEEZE reconstructed images. The images from 2010 through 2011 …


Autocorrelation Infrasound Interferometry, Hugo D. Ortiz, Robin S. Matoza, Jeffrey B. Johnson, Stephen Hernandez, Juan C. Anzieta, Mario C. Ruiz Apr 2021

Autocorrelation Infrasound Interferometry, Hugo D. Ortiz, Robin S. Matoza, Jeffrey B. Johnson, Stephen Hernandez, Juan C. Anzieta, Mario C. Ruiz

Geosciences Faculty Publications and Presentations

Seismic and infrasound multistation ambient‐noise interferometry has been widely used to infer ground and atmospheric properties, and single‐station and autocorrelation seismic interferometry has also shown potential for characterizing Earth structure at multiple scales. We extend autocorrelation seismic interferometry to ambient atmospheric infrasound recordings that contain persistent local noise from waterfalls and rivers. Across a range of geographic settings, we retrieve relative sound‐speed changes that exhibit clear diurnal oscillations consistent with temperature and wind variations. We estimate ambient air temperatures from variations in relative sound speeds. The frequency band from 1 to 2 Hz appears most suitable to retrieve weather parameters …


Live Cell Biomass Tracking For Basic, Translational, And Clinical Research, Graeme Murray Jan 2021

Live Cell Biomass Tracking For Basic, Translational, And Clinical Research, Graeme Murray

Theses and Dissertations

Single cell mass is tightly regulated throughout generations and the cell cycle, making it an important marker of cell health. Abnormal changes in cell size can be the first indication of dysfunction in response to environmental stimuli such as cytotoxic drugs. Described here is the further development of high-speed live cell interferometry (HSLCI) to concurrently measure the changes in single cell mass of thousands of cells over time. Critically, the high-throughput nature of HSLCI provides realistic pictures of tumor heterogeneity. This throughput enabled HSLCI to correctly predict in vivo carboplatin sensitivity of three triple negative breast cancer patient derived xenografts, …


Estimation Of Co-Seismic Land Deformation Due To Mw 7.3 2017 Earthquake In Iran (12 November 2017) Using Sentinel-1 Dinsar, Fatma Canaslan Çomut, Şule Gürboğa, Tayeb Smail Aug 2020

Estimation Of Co-Seismic Land Deformation Due To Mw 7.3 2017 Earthquake In Iran (12 November 2017) Using Sentinel-1 Dinsar, Fatma Canaslan Çomut, Şule Gürboğa, Tayeb Smail

Bulletin of the Mineral Research and Exploration

A strong shaking with Mw 7.3 occurred on 12th November 2017 around the Sarpol-e Zahab town in the border area between Iran and Iraq. It has a number of foreshocks and aftershocks increasing the total deformation, cumulatively. In this study, we have investigated how earth surface deformed after such a strong earthquake and its scatters. Because, the deformation inspection are indispensable for the safety of citizens and infrastructures. The best way for monitoring of surface deformation in such a big event is the SAR technique. This system can work effectively during night and day under different weather conditions. The Interferometric …


Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani Jul 2020

Generation Of Correlated Dual Frequency Combs With Pm Fiber Lasers For High-Precision Metrology, Hanieh Afkhamiardakani

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers has evolved into a powerful technique for high-precision metrology. In this method a physical parameter to be measured imparts a phase shift onto a pulse circulating in the laser cavity. Inside a laser cavity, that phase shift becomes a frequency shift (phase shift/round-trip time) applied to the whole frequency comb created by this pulse as it exits the cavity at each round-trip. This frequency shift is measured by interfering this comb with a reference comb created by a reference pulse circulating in the same mode-locked …


Visualization Of Brown Fat Using X-Ray Dark Field Imaging, Troy D. Jacobs Jun 2020

Visualization Of Brown Fat Using X-Ray Dark Field Imaging, Troy D. Jacobs

LSU Master's Theses

Introduction: Obesity has become a major societal issue. Many researchers are looking for ways to combat this growing epidemic. Brown adipose tissue (BAT) might be a way to help individuals overcome the challenges associated with weight loss and maintenance of weight loss, but a better understanding of BAT and how to control and utilize it is needed. BAT differs from white adipose tissue (WAT) in that BAT is rich with mitochondria and therefore is metabolically active. BAT is a source of non-shivering thermogenesis and can be activated both by cold exposure and pharmacologically. Current methods of assessing BAT activity are …


Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson Mar 2020

Zernike Piston Statistics In Turbulent Multi-Aperture Optical Systems, Joshua J. Garretson

Theses and Dissertations

There is currently a lack of research into how the atmosphere effects Zernike piston. This Zernike piston is a coefficient related to the average phase delay of a wave. Usually Zernike piston can be ignored over a single aperture because it is merely a delay added to the entire wavefront. For multi-aperture interferometers though piston cannot be ignored. The statistics of Zernike piston could supplement and improve atmospheric monitoring, adaptive optics, stellar interferometers, and fringe tracking. This research will focus on developing a statistical model for Zernike piston introduced by atmospheric turbulence.


Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie Aug 2019

Tailored Frequency Comb Structures And Their Sensing Applications, James Hendrie

Optical Science and Engineering ETDs

The focus of this dissertation is the development and investigation of nested cavity mode-locked lasers and their resultant tailored frequency combs. A nested cavity is made up of two cavities, known as parents. One parent is a larger, active, 100MHz Ti:Saph oscillator and the other is a smaller, passive, 7GHz Fabry-Perot Etalon (FPE). Unlike standard frequency combs that are continuous, a tailored comb’s teeth are distributed in equally spaced groups where the center of each group corresponds to the resonance of the FPE and the side bands are determined by the resonances of the Ti:Saph. This unique coupling of the …


Adaptive Mode Matching In Advanced Ligo And Beyond, Thomas V. Vo May 2019

Adaptive Mode Matching In Advanced Ligo And Beyond, Thomas V. Vo

Dissertations - ALL

The era of gravitational wave astronomy was ushered in by the LIGO (Laser Interferometer Gravitational-Wave Observatory) collaboration with the detection of a binary black hole collision [2]. The event that shook the foundation of space-time allowed mankind to view the cosmos in a way that had never been done previously. Since then, another remarkable event was found by the LIGO and Virgo detectors where two neutron stars collided, sending both gravitational and electromagnetic waves to earth [3]. LIGO was built with the purpose of detecting the ripples in space-time caused by astrophysical events with the hopes of understanding the complexities …


Insar Simulations For Swot And Dual Frequency Processing For Topographic Measurements, Gerard Masalias Huguet Mar 2019

Insar Simulations For Swot And Dual Frequency Processing For Topographic Measurements, Gerard Masalias Huguet

Masters Theses

In Earth remote sensing precise characterization of the backscatter coefficient is important to extract valuable information about the observed target. A system that eliminates platform motion during near-nadir airborne observations is presented in this thesis, showing an improvement on the accuracy of measurements for a Ka- band scatterometer previously developed at Microwave Remote Sensing Laboratory (MIRSL). These very same results are used to simulate the reflectivity of such targets as seen from a spaceborne radar and estimate height errors based on mission-specific geometry. Finally, data collected from a dual-frequency airborne interferometer com- prised by the Ka-band system and an S-band …


Weak Values From Strong Interactions In Neutron Interferometry, Tobias Denkmayr, Justin Dressel, Hermann Geppert-Kleinrath, Yuji Hasegawa, Stephan Sponar Apr 2018

Weak Values From Strong Interactions In Neutron Interferometry, Tobias Denkmayr, Justin Dressel, Hermann Geppert-Kleinrath, Yuji Hasegawa, Stephan Sponar

Mathematics, Physics, and Computer Science Faculty Articles and Research

In their original framework weak values must be measured by weak measurements that are minimally disturbing, meaning that the coupling between an investigated quantum system and a measurement device has no influence on the evolution of the system. However, under certain circumstances this weakness of the interaction is not necessary. In that case weak values can still be exactly determined from the statistics of the outcomes of arbitrary-strength generalized measurements. Here, we report an experimental procedure for neutron matter-waves that extends the notion of generalized eigenvalues for the neutron’s path system to allow the exact determination of weak values using …


Simulating Pulsar Signal Scattering In The Interstellar Medium With Two Distinct Scattering Phenomena, Adam P. Jussila Jan 2018

Simulating Pulsar Signal Scattering In The Interstellar Medium With Two Distinct Scattering Phenomena, Adam P. Jussila

Honors Papers

In this thesis, I discuss the creation of a simulation that attempts to reconstruct secondary spectra of pulsars by simulating the scattering in the interstellar medium. For the simulation, we focus on two distinct scattering phenomena, namely a coherent deflection at grazing incidence along a sheet of material, and a random deflection due to a random-walk type process through clouds of material. The simulation focuses on a representation known as a Wavefield Representation that our group has not utilized to this extent before, and it allowed us to understand the physics behind these scattering events in new depths. The final …


Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang Sep 2017

Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

On 3 April 2017, a Mw 6.5 earthquake struck Moiyabana, Botswana, nucleating at >20 km focal depth within the Paleoproterozoic Limpopo-Shashe orogenic belt separating the Archean Zimbabwe and Kaapvaal Cratons. We investigate the lithospheric structures associated with this earthquake using high-resolution aeromagnetic and gravity data integrated with Differential Interferometric Synthetic Aperture Radar (DInSAR) analysis. Here we present the first results that provide insights into the tectonic framework of the earthquake. The ruptured fault trace delineated by DInSAR aligns with a distinct NW striking and NE dipping magnetic lineament within the Precambrian basement. The fault plane solution and numerical modeling …


High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D. Jul 2017

High Precision Refractive Index Measurement Techniques Applied To The Analysis Of Neutron Damage And Effects In Caf2 Crystals, Joseph P. Morris Ph.D.

Nuclear Engineering ETDs

Neutron irradiation damages material by atomic displacements. The majority of these damage regions are microscopic and difficult to study, though they can cause a change in density and thus a change in refractive index in transparent materials. This work utilized CaF2 crystals to track refractive index change based on neutron radiation dose. High precision refractive index measurements were performed utilizing a nested-cavity mode-locked laser where the CaF2 crystal acted as a Fabry-Pérot Etalon (FPE). By comparing the repetition rate of the cavity and the repetition rate of the FPE, refractive index change was determined. Following several irradiation experiments, …


Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr Jun 2017

Quantum Optical Interferometry And Quantum State Engineering, Richard J. Birrittella Jr

Dissertations, Theses, and Capstone Projects

We highlight some of our research done in the fields of quantum optical interferometry and quantum state engineering. We discuss the body of work for which our research is predicated, as well as discuss some of the fundamental tenants of the theory of phase estimation. We do this in the context of quantum optical interferometry where our primary interest lies in the calculation of the quantum Fisher information as it has been shown that the minimum phase uncertainty obtained, the quantum Cramer-Rao bound, is saturated by parity-based detection methods. We go on to show that the phase uncertainty one obtains …


Implications Of Sea Ice On Southern Ocean Microseisms Detected By A Seismic Array In West Antarctica, Martin J. Pratt, Douglas A. Wiens, J. Paul Winberry, Sridhar Anandakrishnan, Garrett G. Euler Jan 2017

Implications Of Sea Ice On Southern Ocean Microseisms Detected By A Seismic Array In West Antarctica, Martin J. Pratt, Douglas A. Wiens, J. Paul Winberry, Sridhar Anandakrishnan, Garrett G. Euler

All Faculty Scholarship for the College of the Sciences

The proximity of Southern Ocean storms coupled with seasonal variation in sea ice make Antarctica ideal for the study of microseism sources. We explore frequency-dependent beamforming results using a short-duration, 60 km aperture, broad-band seismic array located on the Whillans Ice Stream, West Antarctica. Locations of single-frequency microseism (13–16 s period) generation are in regions where the continental shelf is ice-free, consistent with previous studies, and show Rayleigh wave sources remaining at consistent backazimuths throughout the duration of the array. Beamforming analysis of daily noise correlations shows that long-period double-frequency microseisms (9–11 s) consist predominantly of Rayleigh waves excited by …


Effect Of Monomer Diffusion On Photoinduced Shrinkage In Photopolymer Layers Determined By Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Manojit Pramanik, Vincent Toal, Izabela Naydenova Jan 2017

Effect Of Monomer Diffusion On Photoinduced Shrinkage In Photopolymer Layers Determined By Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Manojit Pramanik, Vincent Toal, Izabela Naydenova

Conference Papers

The aim of this study is to determine the effect of monomer diffusion on the photoinduced shrinkage profile in acrylamide based photopolymer layers during holographic recording. Using phase shifting electronic speckle pattern interferometry the displacement at each pixel in the image of the layer is measured. The complete displacement profile of the layer was obtained using phase shifting technique. We observed a reduction in shrinkage as a result of monomer diffusion from unexposed regions of holographic exposure. As a result of diffusion the maximum shrinkage was reduced by 26 % from 7.18μm to 5.28μm in a photopolymer layer of thickness160 …


Quantitative Analysis And Process Of High Speed Live Cell Interferometry Measurements, Daniel Guest Jan 2017

Quantitative Analysis And Process Of High Speed Live Cell Interferometry Measurements, Daniel Guest

Theses and Dissertations

The application of auto focus, using an optical beam deflection technique, to existing live cell interferometry measurements was developed and examined. The benefit to relevant experiments, currently being performed, is shown as well as its performance across various magnifications. Enough information is given so that the system can be reproduced to fit any end users needs.


Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇ Jan 2017

Investigation Of A Novel Temperature-Sensing Mechanism Based On Strain-Induced Optical Path-Length Difference In A Multicore Optical Fiber, Belkis Gökbulut, Sema Güvenç, Mehmet Naci̇ İnci̇

Turkish Journal of Physics

A four-core optical fiber is employed to investigate a novel temperature-sensing mechanism, which is based on the strain-induced optical path-length difference between the fiber core pairs. A short segment of a four-core fiber is wound around a solid stainless steel cylinder to form a tight circular loop, which is exposed to temperatures of up to 100 $^{\circ}$C. Temperature-induced radial expansion of the stainless steel cylinder causes a shear strain in the fiber and introduces an optical path-length difference between the fiber core pairs. This results in a total phase shift of about 20.40 $\pm $ 0.29 rad in the interference …


Quantitative Measurement Of Displacement In Photopolymer Layers During Holographic Recording Using Phase Shifting Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Viswanath Bavigadda, Paul Kumar Upputturi, Manojit Pramanik, Vincent Toal, Izabela Naydenova Jan 2016

Quantitative Measurement Of Displacement In Photopolymer Layers During Holographic Recording Using Phase Shifting Electronic Speckle Pattern Interferometry, Mohesh Moothanchery, Viswanath Bavigadda, Paul Kumar Upputturi, Manojit Pramanik, Vincent Toal, Izabela Naydenova

Conference Papers

The aim of this study is to determine the displacement profile due to shrinkage in acrylamide-based photopolymer layer during holographic recording. Using phase shifting electronic speckle pattern interferometry the displacement at each pixel in the image of the object is measured by phase shifting technique so that a complete displacement profile of the object can be obtained. It was observed that the displacement profile is Gaussian and resembles to the profile of the recording beam. We observed an increase in shrinkage from 2 μm at 20 seconds of recording to 7.5 μm after 120 seconds of recording. The technique allows …


Beam-Energy-Dependent Two-Pion Interferometry And The Freeze-Out Eccentricity Of Pions Measured In Heavy Ion Collisions At The Star Detector, J. Kevin Adkins, Renee Fatemi, Suvarna Ramachandran, G. Webb, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin Jul 2015

Beam-Energy-Dependent Two-Pion Interferometry And The Freeze-Out Eccentricity Of Pions Measured In Heavy Ion Collisions At The Star Detector, J. Kevin Adkins, Renee Fatemi, Suvarna Ramachandran, G. Webb, L. Adamczyk, G. Agakishiev, M. M. Aggarwal, Z. Ahammed, I. Alekseev, J. Alford, C. D. Anson, A. Aparin

Physics and Astronomy Faculty Publications

We present results of analyses of two-pion interferometry in Au+Au collisions at √SNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV measured in the STAR detector as part of the BNL Relativistic Heavy Ion Collider Beam Energy Scan program. The extracted correlation lengths (Hanbury-Brown–Twiss radii) are studied as a function of beam energy, azimuthal angle relative to the reaction plane, centrality, and transverse mass (mT) of the particles. The azimuthal analysis allows extraction of the eccentricity of the entire fireball at kinetic freeze-out. The energy dependence of this observable is expected to be sensitive …


The Spatial Cross-Correlation Method For Dispersive Surface Waves, Andrew P. Lamb, Kasper Van Wijk, Lee M. Liberty, T. Dylan Mikesell Oct 2014

The Spatial Cross-Correlation Method For Dispersive Surface Waves, Andrew P. Lamb, Kasper Van Wijk, Lee M. Liberty, T. Dylan Mikesell

Geosciences Faculty Publications and Presentations

Dispersive surface waves are routinely used to estimate the subsurface shear-wave velocity distribution, at all length scales. In the well-known Spatial Autocorrelation method, dispersion information is gained from the correlation of seismic noise signals recorded on the vertical (or radial) components. We demonstrate practical advantages of including the cross-correlation between radial and vertical components of the wavefield in a spatial cross-correlation method. The addition of cross-correlation information increases the resolution and robustness of the phase velocity dispersion information, as demonstrated in numerical simulations and a near-surface field study with active seismic sources, where our method confirms the presence of a …