Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Hybrid Agent-Based And Equation Based Model For The Spread Of Infectious Diseases, Elizabeth Hunter, Brian Mac Namee, John D. Kelleher Oct 2020

A Hybrid Agent-Based And Equation Based Model For The Spread Of Infectious Diseases, Elizabeth Hunter, Brian Mac Namee, John D. Kelleher

Articles

Both agent-based models and equation-based models can be used to model the spread of an infectious disease. Equation-based models have been shown to capture the overall dynamics of a disease outbreak while agent-based models are able to capture heterogeneous characteristics of agents that drive the spread of an outbreak. However, agent-based models are computationally intensive. To capture the advantages of both the equation-based and agent-based models, we create a hybrid model where the disease component of the hybrid model switches between agent-based and equation-based. The switch is determined using the number of agents infected. We first test the model at …


Controlling Infectious Disease: Prevention And Intervention Through Multiscale Models, Adrienna N. Bingham Jan 2019

Controlling Infectious Disease: Prevention And Intervention Through Multiscale Models, Adrienna N. Bingham

Dissertations, Theses, and Masters Projects

Controlling infectious disease spread and preventing disease onset are ongoing challenges, especially in the presence of newly emerging diseases. While vaccines have successfully eradicated smallpox and reduced occurrence of many diseases, there still exists challenges such as fear of vaccination, the cost and difficulty of transporting vaccines, and the ability of attenuated viruses to evolve, leading to instances such as vaccine derived poliovirus. Antibiotic resistance due to mistreatment of antibiotics and quickly evolving bacteria contributes to the difficulty of eradicating diseases such as tuberculosis. Additionally, bacteria and fungi are able to produce an extracellular matrix in biofilms that protects them …