Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Deep learning

Missouri University of Science and Technology

Electrical and Computer Engineering Faculty Research & Creative Works

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker Jan 2023

Skin Lesion Segmentation In Dermoscopic Images With Noisy Data, Norsang Lama, Jason Hagerty, Anand Nambisan, Ronald Joe Stanley, William Van Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

We Propose a Deep Learning Approach to Segment the Skin Lesion in Dermoscopic Images. the Proposed Network Architecture Uses a Pretrained Efficient Net Model in the Encoder and Squeeze-And-Excitation Residual Structures in the Decoder. We Applied This Approach on the Publicly Available International Skin Imaging Collaboration (ISIC) 2017 Challenge Skin Lesion Segmentation Dataset. This Benchmark Dataset Has Been Widely Used in Previous Studies. We Observed Many Inaccurate or Noisy Ground Truth Labels. to Reduce Noisy Data, We Manually Sorted All Ground Truth Labels into Three Categories — Good, Mildly Noisy, and Noisy Labels. Furthermore, We Investigated the Effect of Such …


Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker Jan 2022

Chimeranet: U-Net For Hair Detection In Dermoscopic Skin Lesion Images, Norsang Lama, Reda Kasmi, Jason R. Hagerty, R. Joe Stanley, Reagan Harris Young, Jessica Miinch, Januka Nepal, Anand Nambisan, William V. Stoecker

Electrical and Computer Engineering Faculty Research & Creative Works

Hair and ruler mark structures in dermoscopic images are an obstacle preventing accurate image segmentation and detection of critical network features. Recognition and removal of hairs from images can be challenging, especially for hairs that are thin, overlapping, faded, or of similar color as skin or overlaid on a textured lesion. This paper proposes a novel deep learning (DL) technique to detect hair and ruler marks in skin lesion images. Our proposed ChimeraNet is an encoder-decoder architecture that employs pretrained EfficientNet in the encoder and squeeze-and-excitation residual (SERes) structures in the decoder. We applied this approach at multiple image sizes …