Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis Jul 2016

A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis

Computational Modeling & Simulation Engineering Theses & Dissertations

The purpose of this thesis is to introduce a simulation-based software framework that facilitates the development of collaborative autonomous systems. Significant commonalities exist in the design approaches of both collaborative and autonomous systems, mirroring the sense, plan, act paradigm, and mostly adopting layered architectures. Unfortunately, the development of such systems is intricate and requires low-level interfacing which significantly detracts from development time. Frameworks for the development of collaborative and autonomous systems have been developed but are not flexible and center on narrow ranges of applications and platforms. The proposed framework utilizes an expandable layered structure that allows developers to define …


Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata Jun 2016

Bunch Splitting Simulations For The Jleic Ion Collider Ring, R. Gamage, T. Satogata

Physics Faculty Publications

We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.


High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang Jan 2016

High-Fidelity Simulations Of Long-Term Beam-Beam Dynamics On Gpus, B. Terzić, K. Arumugam, M. Aturban, C. Cotnoir, A. Godunov, D. Ranjan, M. Stefani, M. Zubair, F. Lin, V. Morozov, Y. Roblin, H. Zhang

Physics Faculty Publications

Future machines such as the Electron Ion Collider (MEIC), linac-ring machines (eRHIC) or LHeC are particularly sensitive to beam-beam effects. This is the limiting factor for long-term stability and high luminosity reach. The complexity of the non-linear dynamics makes it challenging to perform such simulations typically requiring millions of turns. Until recently, most of the methods have involved using linear approximations and/or tracking for a limited number of turns. We have developed a framework which exploits a massively parallel Graphical Processing Units (GPU) architecture to allow for tracking millions of turns in a sympletic way up to an arbitrary order. …


Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo Jan 2016

Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo

Mathematics & Statistics Faculty Publications

In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked …