Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

PDF

Australian Institute for Innovative Materials - Papers

Materials

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Bio-Interface Of Conducting Polymer-Based Materials For Neuroregeneration, Bo Weng, Jianglin Diao, Qun Xu, Yuqing Liu, Changming Li, Ailing Ding, Jun Chen Jan 2015

Bio-Interface Of Conducting Polymer-Based Materials For Neuroregeneration, Bo Weng, Jianglin Diao, Qun Xu, Yuqing Liu, Changming Li, Ailing Ding, Jun Chen

Australian Institute for Innovative Materials - Papers

Nerve system diseases like Parkinson's disease, Huntington's disease, Alzheimer's disease, etc. seriously affect thousands of patients' lives every year, making them suffer from pains and inconvenience. Recently, bio-interfaces between neural cells/tissues and polymer based biomaterials attracted worldwide attention due to the ability of polymer based biomaterials to serve as nerve conduits, drug carriers and neurites guidance platform in neuroregeneration. The role that bio-interface played and the way it interacted with neural tissues and cells have been thoroughly investigated by the researchers. In this paper we mainly focus on reviewing the bio-interface between nerve tissues/cells and advanced functional biocompatible polymers, such …


Functionalised Inherently Conducting Polymers As Low Biofouling Materials, Binbin Zhang, Alexander Nagle, Gordon G. Wallace, Timothy W. Hanks, Paul J. Molino Jan 2015

Functionalised Inherently Conducting Polymers As Low Biofouling Materials, Binbin Zhang, Alexander Nagle, Gordon G. Wallace, Timothy W. Hanks, Paul J. Molino

Australian Institute for Innovative Materials - Papers

Diatoms are a major component of microbial biofouling layers that develop on man-made surfaces placed in aquatic environments, resulting in significant economic and environmental impacts. This paper describes surface functionalisation of the inherently conducting polymers (ICPs) polypyrrole (PPy) and polyaniline (PANI) with poly(ethylene glycol) (PEG) and their efficacy as fouling resistant materials. Their ability to resist interactions with the model protein bovine serum albumin (BSA) was tested using a quartz crystal microbalance with dissipation monitoring (QCM-D). The capacity of the ICP-PEG materials to prevent settlement and colonisation of the fouling diatom Amphora coffeaeformis (Cleve) was also assayed. Variations were demonstrated …


Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen Jan 2015

Synthesis Of Different Cuo Nanostructures By A New Catalytic Template Method As Anode Materials For Lithium-Ion Batteries, Xiaohang Ma, Shuang Zeng, Bangkun Zou, Xin Liang, Jia-Ying Liao, Chunhua Chen

Australian Institute for Innovative Materials - Papers

CuO powders composed of different rod-like clusters or dandelion-like nanospheres are prepared by a low-temperature thermal decomposition process of Cu(OH)2 precursors, which are obtained via a catalytic template method. A tentative mechanism is proposed to explain the formation and transformation of different Cu(OH)2 nanostructures. X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, field-emission scanning electron microscopy, transmission electron microscopy, infrared spectra analysis, Brunauer-Emmett-Teller measurements, and galvanostatic cell cycling are employed to characterize the structures and electrochemical performance of these CuO samples. The results show that these CuO samples obtained after 500 °C calcination have a stable cycling performance with a reversible …


3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun Jan 2015

3d Fe2(Moo4)3 Microspheres With Nanosheet Constituents As High-Capacity Anode Materials For Lithium-Ion Batteries, Hao Zheng, Shiqiang Wang, Jiazhao Wang, Jun Wang, Lin Li, Yun Yang, Chuanqi Feng, Ziqi Sun

Australian Institute for Innovative Materials - Papers

Three-dimensional (3D) Fe2(MoO4)3 microspheres with ultrathin nanosheet constituents are first synthesized as anode materials for the lithium-ion battery. It is interesting that the single-crystalline nanosheets allow rapid electron/ion transport on the inside, and the high porosity ensures fast diffusion of liquid electrolyte in energy storage applications. The electrochemical properties of Fe2(MoO4)3 as anode demonstrates that 3D Fe2(MoO4)3 microspheres deliver an initial capacity of 1855 mAh/g at a current density of 100 mA/g. Particularly, when the current density is increased to 800 mA/g, the reversible capacity of Fe2(MoO4)3 anode still arrived at 456 mAh/g over 50 cycles. The large and reversible …


Electroactive Biocompatible Materials For Nerve Cell Stimulation, Mei Yang, Youlong Liang, Qingyuan Gui, Jun Chen, Yong Liu Jan 2015

Electroactive Biocompatible Materials For Nerve Cell Stimulation, Mei Yang, Youlong Liang, Qingyuan Gui, Jun Chen, Yong Liu

Australian Institute for Innovative Materials - Papers

In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the …


Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han Jan 2015

Manganese Dioxide-Anchored Three-Dimensional Nitrogen-Doped Graphene Hybrid Aerogels As Excellent Anode Materials For Lithium Ion Batteries, Zhu Yin Sui, Caiyun Wang, Kewei Shu, Quan-Sheng Yang, Yu Ge, Gordon G. Wallace, Bao Hang Han

Australian Institute for Innovative Materials - Papers

The capacity of manganese dioxide (MnO2) deteriorates with cycling due to the irreversible changes induced by the repeated lithiation and delithiation processes. To overcome this drawback, MnO2/nitrogen-doped graphene hybrid aerogels (MNGAs) were prepared via a facile redox process between KMnO4 and carbon within nitrogen-doped graphene hydrogels. The three-dimensional nitrogen-doped graphene hydrogels were prepared and utilized as matrices for MnO2 deposition. The MNGAs-120 obtained after a deposition time of 120 min delivered a very high discharge capacity of 909 mA h g-1 after 200 cycles at a current density of 400 mA g-1 …


Fabrication Of Thermoelectric Materials-Thermal Stability And Repeatability Of Achieved Efficiencies, Sima Aminorroaya-Yamini, Matthew D. Brewis, Jacob Byrnes, Rafael Santos, Andrew Manettas, Y Z. Pei Jan 2015

Fabrication Of Thermoelectric Materials-Thermal Stability And Repeatability Of Achieved Efficiencies, Sima Aminorroaya-Yamini, Matthew D. Brewis, Jacob Byrnes, Rafael Santos, Andrew Manettas, Y Z. Pei

Australian Institute for Innovative Materials - Papers

Metal chalcogenides have delivered the highest efficiencies among thermoelectric materials. Although the thermal stability of thermoelectric materials at device operating temperatures has been of concern, recent studies have reported the efficiencies of materials prepared with different fabrication techniques. Here, we have fabricated a p-type, multiphase lead chalcogenide compound of (PbTe)0.55(PbS)0.35(PbSe)0.1, with three common fabrication techniques of quenched, quenched-annealed and furnace cooled followed by spark plasma sintering. The compound contains PbS-rich precipitates within a PbTe-rich matrix. The achieved samples from various fabrication procedures demonstrate distinct microstructures that evolve with thermal cycling. We have shown that the thermoelectric efficiency of metastable compound …


Vanadium-Based Nanostructure Materials For Secondary Lithium Battery Applications, Hui Teng Tan, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim Jan 2015

Vanadium-Based Nanostructure Materials For Secondary Lithium Battery Applications, Hui Teng Tan, Xianhong Rui, Wenping Sun, Qingyu Yan, Tuti M. Lim

Australian Institute for Innovative Materials - Papers

Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to "create" newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical …