Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Australian Institute for Innovative Materials - Papers

Oxide

Articles 1 - 16 of 16

Full-Text Articles in Physical Sciences and Mathematics

Reduced Graphene Oxide With Superior Cycling Stability And Rate Capability For Sodium Storage, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

Reduced Graphene Oxide With Superior Cycling Stability And Rate Capability For Sodium Storage, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Sodium ion battery is a promising electrical energy storage system for sustainable energy storage applications due to the abundance of sodium resources and their low cost. In this communication, the electrochemical properties of sodium ion storage in reduced graphene oxide (RGO) were studied in an electrolyte consisting of 1 M NaClO4 in propylene carbonate (PC). The experimental results show that the RGO anode allowed significant sodium ion insertion, leading to higher capacity at high current density compared to the previously reported results for carbon materials. This is due to the fact that RGO possesses higher electrical conductivity and is a …


Manganosite-Microwave Exfoliated Graphene Oxide Composites For Asymmetric Supercapacitor Device Applications, Dennis Antiohos, Kanlaya Pingmuang, Mark Romano, Stephen Beirne, Tony C. Romeo, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Sukon Phanichphant, Jun Chen Jan 2013

Manganosite-Microwave Exfoliated Graphene Oxide Composites For Asymmetric Supercapacitor Device Applications, Dennis Antiohos, Kanlaya Pingmuang, Mark Romano, Stephen Beirne, Tony C. Romeo, Phil Aitchison, Andrew I. Minett, Gordon G. Wallace, Sukon Phanichphant, Jun Chen

Australian Institute for Innovative Materials - Papers

Graphene based materials coupled with transition metal oxides are promising electrode materials in asymmetric supercapacitors owing to their unique properties which include high surface area, good chemical stability, electrical conductivity, abundance, and lower cost profile over time. In this paper a composite material consisting of graphene oxide exfoliated with microwave radiation (mw rGO), and manganosite (MnO) is synthesised in order to explore their potential as an electrode material. The composite material was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to explore …


Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route Toward The Next Generation Of Self-Assembled Layer-By-Layer Multifunctional 3d Architectures, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Simon E. Moulton, Joselito M. Razal, Gordon G. Wallace Jan 2013

Organic Solvent-Based Graphene Oxide Liquid Crystals: A Facile Route Toward The Next Generation Of Self-Assembled Layer-By-Layer Multifunctional 3d Architectures, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Konstantin Konstantinov, Simon E. Moulton, Joselito M. Razal, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

We introduce soft self-assembly of ultralarge liquid crystalline (LC) graphene oxide (GO) sheets in a wide range of organic solvents overcoming the practical limitations imposed on LC GO processing in water. This expands the number of known solvents which can support amphiphilic self-assembly to ethanol, acetone, tetrahydrofuran, N-dimethylformamide, N-cyclohexyl-2-pyrrolidone, and a number of other organic solvents, many of which were not known to afford solvophobic self-assembly prior to this report. The LC behavior of the as-prepared GO sheets in organic solvents has enabled us to disperse and organize substantial amounts of aggregate-free single-walled carbon nanotubes (SWNTs, up to 10 wt …


Highly Water-Soluble Magnetic Iron Oxide (Fe3o4) Nanoparticles For Drug Delivery: Enhanced In Vitro Therapeutic Efficacy Of Doxorubicin And Mion Conjugates, Muhammad Irfan Majeed, Qunwei Lu, Wei Yan, Zhen Li, Irshad Hussain, Muhammad Nawaz Tahir, Wolfgang Tremel, Bien Tan Jan 2013

Highly Water-Soluble Magnetic Iron Oxide (Fe3o4) Nanoparticles For Drug Delivery: Enhanced In Vitro Therapeutic Efficacy Of Doxorubicin And Mion Conjugates, Muhammad Irfan Majeed, Qunwei Lu, Wei Yan, Zhen Li, Irshad Hussain, Muhammad Nawaz Tahir, Wolfgang Tremel, Bien Tan

Australian Institute for Innovative Materials - Papers

We report a simple one step protocol for the preparation of fairly monodisperse and highly water-soluble magnetic iron oxide nanoparticles (MIONs) through a co-precipitation method using a novel multifunctional, biocompatible and water-soluble polymer ligand dodecanethiol-polymethacrylic acid (DDT-PMAA). DDT-PMAA owing to its several intrinsic properties, not only efficiently controls the size of the MIONs but also gives them excellent water solubility, long time stability against aggregation and oxidation, biocompatibility and multifunctional surface rich in thioether and carboxylic acid groups. The molecular weight and concentration of the polymer ligand were optimized to produce ultrasmall (4.6 +/- 0.7 nm) MIONs with high magnetization …


A Significant Improvement In Both Low- And High-Field Performance Of Mgb2 Superconductors Through Graphene Oxide Doping, K S B De Silva, S H Aboutalebi, Xun Xu, Xiaolin Wang, W X Li, Konstantin Konstantinov, S X. Dou Jan 2013

A Significant Improvement In Both Low- And High-Field Performance Of Mgb2 Superconductors Through Graphene Oxide Doping, K S B De Silva, S H Aboutalebi, Xun Xu, Xiaolin Wang, W X Li, Konstantin Konstantinov, S X. Dou

Australian Institute for Innovative Materials - Papers

The effects of graphene oxide (GO) doping on the superconducting properties of MgB2 were studied using bulk samples made by the diffusion method. Homogeneous dispersions of GO in tetrahydrofuran were obtained through a novel synthesis method, which is then chemically doped with MgB2. It was found that GO doping significantly improves the critical current density, under both low and high magnetic fields, which distinguishes GO from all the other elements doped into MgB2 so far. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace Jan 2013

Facile Synthesis Of Reduced Graphene Oxide/Mwnts Nanocomposite Supercapacitor Materials Tested As Electrophoretically Deposited Films On Glassy Carbon Electrodes, Widsanusan Chartarrayawadee, Simon E. Moulton, Chee O. Too, Byung C. Kim, Rao Yepuri, Anthony C. Romeo, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up …


A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou Jan 2013

A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Transition metal oxide (Mn3O4, Fe2O3, Co3O4, and ZnO) and reduced graphene oxide (RGO) composites were successfully synthesized via a hydrothermal method using the direct reaction between the corresponding metal powder and graphene oxide (GO). In this process, the GO can be reduced by transition metal powder in water, and the nanosized metal oxide can be obtained, and homogeneously mixed with and wrapped by RGO to form a metal oxide/RGO composite at the same time. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy were used to characterize the as-prepared materials. The different experimental parameters, including reactants, …


Co3o4 Nanorods Decorated Reduced Graphene Oxide Composite For Oxygen Reduction Reaction In Alkaline Electrolyte, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Weimin Zhang, Weihua Li, Jun Chen Jan 2013

Co3o4 Nanorods Decorated Reduced Graphene Oxide Composite For Oxygen Reduction Reaction In Alkaline Electrolyte, Mingyan Wang, Junrao Huang, Meng Wang, Dongen Zhang, Weimin Zhang, Weihua Li, Jun Chen

Australian Institute for Innovative Materials - Papers

Highly uniform Co3O4 nanorods decorated on reduced graphene oxide (rGO) were prepared by a one-pot hydrothermal procedure. During the hydrothermal process, Co2+ ions were crystallized to Co3O4 nanorods and simultaneously GO was reduced to rGO to form the Co3O4/rGO hybrid. The Co3O4/rGO hybrid was characterized by scanning electron micrographs, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. The obtained Co3O4/rGO hybrid exhibits excellent electrocatalytic performance for oxygen reduction reaction.


Wet-Spinning Of Multifunctional Graphene Fibers Using Graphene Oxide Liquid Crystals, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace Jan 2013

Wet-Spinning Of Multifunctional Graphene Fibers Using Graphene Oxide Liquid Crystals, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

The recent discovery of liquid crystalline (LC) behavior of graphene oxide (GO) dispersions in various organic, and aqueous media brings added control to the assembly of larger structures using the chemical process approach.[1-3] The LC state can be used to direct the ordered assembly of nanocomponents in macroscopic structures via simple methods like wet-spinning.


Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori Jan 2013

Cation Exchange At Semiconducting Oxide Surfaces: Origin Of Light-Induced Performance Increases In Porphyrin Dye-Sensitized Solar Cells, Matthew J. Griffith, Kenji Sunahara, Akihiro Furube, Attila J. Mozer, David L. Officer, Pawel Wagner, Gordon G. Wallace, Shogo Mori

Australian Institute for Innovative Materials - Papers

The origin of simultaneous improvements in the short-circuit current density (Jsc) and open-circuit voltage (Voc) of porphyrin dye-sensitized TiO2 solar cells following white light illumination was studied by systematic variation of several different device parameters. Reduction of the dye surface loading resulted in greater relative performance enhancements, suggesting open space at the TiO2 surface expedites the process. Variation of the electrolyte composition and subsequent analysis of the conduction band potential shifts suggested that a light-induced replacement of surface-adsorbed lithium (Li+) ions with dimethylpropylimidazolium (DMPIm+) ions was responsible for an increased electron lifetime by decreasing the recombination with the redox mediator. …


Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton Jan 2013

Aqueous Dispersions Of Reduced Graphene Oxide And Multi Wall Carbon Nanotubes For Enhanced Glucose Oxidase Bioelectrode Performance, Willo Grosse, Joffrey Champavert, Sanjeev Gambhir, Gordon G. Wallace, Simon E. Moulton

Australian Institute for Innovative Materials - Papers

Aqueous dispersions of reduced graphene oxide (rGO) and multi walled carbon nanotubes (MWCNT) were fabricated through a modified chemical reduction method. The significant advantage of the method developed here is the omission of any stabilising compound or organic solvent to obtain stable rGO-MWCNT dispersions. Significantly biological entities, in this case the enzyme glucose oxidase (GOx), can be successfully incorporated into the dispersion. These dispersions were characterised using XPS, SEM, zeta potential and particle size measurements which showed that the dispersion stability is not sacrificed with the addition of GOx, and significantly, the electrical properties of the rGO and MWCNTs are …


The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

The Electrochemical Properties Of High-Capacity Sulfur/Reduced Graphene Oxide With Different Electrolyte Systems, Yunxiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

The lithium/sulfur battery is a promising electrochemical system with high capacity, which is well-known to undergo a complex multistep reaction during the discharge process. Two types of electrolytes including poly (ethylene glycol) dimethyl ether (PEGDME)-based and 1.3 - dioxolane (DOL)/ dimethoxyethane (DME)-based electrolytes were investigated here. Furthermore, LiNO3 additive was introduced into the electrolyte in order to effectively eliminate the overcharge effect. The lithium sulfur battery with 1.0 M LiN(CF3SO2)2 in PEGME with 0.1 M LiNo3 shows highly stable reversible capacity of 624.8 mAh g-1 after 200 cycles and improved average coulombic efficiency of 98 percent.


The Effects Of Fec (Fluoroethylene Carbonate) Electrolyte Additive On The Lithium Storage Properties Of Nio (Nickel Oxide) Nanocuboids, Kuok H. Seng, Li Li, Dapeng Chen, Zhixin Chen, Xiaolin Wang, Hua-Kun Liu, Zaiping Guo Jan 2013

The Effects Of Fec (Fluoroethylene Carbonate) Electrolyte Additive On The Lithium Storage Properties Of Nio (Nickel Oxide) Nanocuboids, Kuok H. Seng, Li Li, Dapeng Chen, Zhixin Chen, Xiaolin Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Nanocuboid shaped NiO (nickel oxide) has been synthesized using an optical floating zone furnace. It was found that the nanocuboids exhibit single crystalline nature, and have clean and sharp edges. Furthermore, the NiO nanocuboids were tested for their electrochemical performances as anode material for LIBs (lithium-ion batteries) in a coin-type half cell. The effects of FEC (fluoroethylene carbonate) additive on the lithium storage performance were also investigated, which is the first of such studies for transition metal oxides. It was found that FEC has a positive effect on the cycling stability and also improves the rate performances of the nanocuboids. …


One-Pot Green Synthesis Of Ag Nanoparticles-Decorated Reduced Graphene Oxide For Efficient Nonenzymatic H2o2 Biosensor, Mingyan Wang, Tao Shen, Meng Wang, Dongen Zhang, Jun Chen Jan 2013

One-Pot Green Synthesis Of Ag Nanoparticles-Decorated Reduced Graphene Oxide For Efficient Nonenzymatic H2o2 Biosensor, Mingyan Wang, Tao Shen, Meng Wang, Dongen Zhang, Jun Chen

Australian Institute for Innovative Materials - Papers

Ag nanoparticles (AgNP) with an average size of 12 nm are successfully decorated on the reduced graphene oxide (rGO) sheets through a simple one-pot hydrothermal method using gallic acid as the reducing agent. This AgNP/rGO hybrid has been successfully applied in the catalytic performance toward the reduction of H2O2. The nonenzymatic sensor demonstrates a linear relationship in a wide concentration range of 0.05-5 mM (R=0.999), and a high sensitivity of 255 μA cm-2 mM-1 to the detection of H2O2.


Scalable One-Step Wet-Spinning Of Graphene Fibers And Yarns From Liquid Crystalline Dispersions Of Graphene Oxide: Towards Multifunctional Textiles, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace Jan 2013

Scalable One-Step Wet-Spinning Of Graphene Fibers And Yarns From Liquid Crystalline Dispersions Of Graphene Oxide: Towards Multifunctional Textiles, Rouhollah Jalili, Seyed Hamed Aboutalebi, Dorna Esrafilzadeh, Roderick L. Shepherd, Jun Chen, Sima Aminorroaya-Yamini, Konstantin Konstantinov, Andrew I. Minett, Joselito M. Razal, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Key points in the formation of liquid crystalline (LC) dispersions of graphene oxide (GO) and their processability via wet-spinning to produce long lengths of micrometer-dimensional fibers and yarns are addressed. Based on rheological and polarized optical microscopy investigations, a rational relation between GO sheet size and polydispersity, concentration, liquid crystallinity, and spinnability is proposed, leading to an understanding of lyotropic LC behavior and fiber spinnability. The knowledge gained from the straightforward formulation of LC GO "inks" in a range of processable concentrations enables the spinning of continuous conducting, strong, and robust fibers at concentrations as low as 0.075 wt%, eliminating …


Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen Jan 2013

Carbon Nanotube-Reduced Graphene Oxide Composites For Thermal Energy Harvesting Applications, Mark S. Romano, Na Li, Dennis Antiohos, Joselito M. Razal, Andrew Nattestad, Stephen Beirne, Shaoli Fang, Yongsheng Chen, Rouhollah Jalili, Gordon G. Wallace, Ray Baughman, Jun Chen

Australian Institute for Innovative Materials - Papers

By controlling the SWNT-rGO electrode composition and thickness to attain the appropriate porosity and tortuosity, the electroactive surface area is maximized while rapid diffusion of the electrolyte through the electrode is maintained. This leads to an increase in exchange current density between the electrode and electrolyte which results in enhanced thermocell performance.