Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2013

Australian Institute for Innovative Materials - Papers

Batteries

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Spinel Linixmn2-Xo4 As Cathode Material For Aqueous Rechargeable Lithium Batteries, F X. Wang, S Y. Xiao, Y Shi, L L. Liu, Y S. Zhu, Y P. Wu, J. Z. Wang, R Holze Jan 2013

Spinel Linixmn2-Xo4 As Cathode Material For Aqueous Rechargeable Lithium Batteries, F X. Wang, S Y. Xiao, Y Shi, L L. Liu, Y S. Zhu, Y P. Wu, J. Z. Wang, R Holze

Australian Institute for Innovative Materials - Papers

Ni-doped spinel LiNixMn2-xO4 (x = 0, 0.05, 0.10) samples were prepared by a sol-gel method. Structure and morphology of the samples were characterized by X-ray diffraction, scanning electron microscopy, Brunnauer-Emmet-Teller method and inductively coupled plasma atomic absorption spectrometry. The electrochemical behavior as a cathode material (positive mass) for aqueous rechargeable lithium batteries (ARLBs) was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, capacity measurements and cycling tests. The results show that the LiNi 0.1Mn1.9O4 electrode presents the best rate and cycling performance but low reversible capacity. In contrast, the LiNi 0.05Mn1.95O4 electrode shows a higher reversible capacity and relatively good cycling …


Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace Jan 2013

Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Polypyrrole is a promising electrode material for flexible/bendable energy storage devices due to its inherent fast redox switching, mechanical flexibility, easy processability and being environmentally benign. However, its low attainable capacity limits its practical applications. Here, we synthesise a polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) (PPy/PMAS) composite by incorporating redox-active PMAS into a PPy matrix via an electropolymerization method. For comparison, polypyrrole containing the electrochemically inert dopant p-toluenesulfonate (PPy-pTS) was prepared under the same conditions. The resultant PPy/PMAS film shows greatly improved electrochemical properties by harnessing the contribution from PMAS, i.e. higher specific capacity, better rate capability and improved cycling stability when used as …


Hollow Structured Li3vo4 Wrapped With Graphene Nanosheets In Situ Prepared By One-Pot Template-Free Method As An Anode For Lithium-Ion Batteries, Yi Shi, Jia-Zhao Wang, Shulei Chou, David Wexler, Hui-Jun Li, Kiyoshi Ozawa, Hua-Kun Liu, Yu-Ping Wu Jan 2013

Hollow Structured Li3vo4 Wrapped With Graphene Nanosheets In Situ Prepared By One-Pot Template-Free Method As An Anode For Lithium-Ion Batteries, Yi Shi, Jia-Zhao Wang, Shulei Chou, David Wexler, Hui-Jun Li, Kiyoshi Ozawa, Hua-Kun Liu, Yu-Ping Wu

Australian Institute for Innovative Materials - Papers

To explore good anode materials of high safety, high reversible capacity, good cycling, and excellent rate capability, a Li3VO4 microbox with wall thickness of 40 nm was prepared by a one-pot and template-free in situ hydrothermal method. In addition, its composite with graphene nanosheets of about six layers of graphene was achieved. Both of them, especially the Li3VO4/graphene nanosheets composite, show superior electrochemical performance to the formerly reported vanadium-based anode materials. The composite shows a reversible capacity of 223 mAh g−1 even at 20C (1C = 400 mAh g−1). After 500 cycles at 10C there is no evident capacity fading.


Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian Jan 2013

Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian

Australian Institute for Innovative Materials - Papers

Mixed metal oxides have been attracting more and more attention recently because of their advantages and superiorities, which can improve the electrochemical performance of single metal oxides. These advantages include structural stability, good electronic conductivity, and reversible capacity. In this work, uniform yolk-shelled ZnCo2O4 microspheres were synthesized by pyrolysis of ZnCo-glycolate microsphere precursors which were prepared via a simple refluxing route without any precipitant or surfactant. The formation process of the yolk-shelled microsphere structure during the thermal decomposition of ZnCo-glycolate is discussed, which is mainly based on the heterogeneous contraction caused by non-equilibrium heat treatment. The performances of the as-prepared …


An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu Jan 2013

An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on …


Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

From energy and environmental consideration, an industrial waste product, coal tar pitch (CTP), is used as the carbon source for Si/AC composite. We exploited a facile sintering method to largely scale up Si/amorphous carbon nanocomposite. The composites with 20 wt.% silicon with PVdF binder exhibited stable lithium storage ability for prolonged cycling. The composite anode delivered a capacity of 400.3 mAh g−1 with a high capacity retention of 71.3% after 1000 cycles. Various methods are used to investigate the reason for the outstanding cyclability. The results indicate that the silicon nanoparticles are wrapped by amorphous SiOx and AC in Si/AC …


Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu Jan 2013

Flexible Cellulose Based Polypyrrole-Multiwalled Carbon Nanotube Films For Bio-Compatible Zinc Batteries Activated By Simulated Body Fluids, Sha Li, Zai Ping Guo, Cai Yun Wang, Gordon G. Wallace, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

This work aims to develop biocompatible non-toxic materials for implantable bio-electronic cells. Polypyrrole (PPy)–carbon nanotube (CNT) composites with varied ratios of PPy to CNTs were chemically synthesized and used as cathodes with the support of cellulose paper. Zinc foil was used as the anode material due to its non-toxicity and moderate dissolution rate in aqueous solutions. Simulated body fluids (SBFs) with various protein concentrations were applied as electrolytes in this battery system. The PPy–CNT|Zn cell is capable of being discharged up to 24.5 hours at a current density of 60 μA cm−2 in a protein free SBF. The batteries …